417 research outputs found
Molecular mechanisms controlling the phenotype and the EMT/MET dynamics of hepatocyte
The complex spatial and paracrine relationships between the various liver histotypes are essential for proper functioning of the hepatic parenchymal cells. Only within a correct tissue organization, in fact, they stably maintain their identity and differentiated phenotype. The loss of histotype identity, which invariably occurs in the primary hepatocytes in culture, or in vivo in particular pathological conditions (fibrosis and tumors), is mainly due to the phenomenon of epithelial-to-mesenchymal transition (EMT). The EMT process, that occurs in the many epithelial cells, appears to be driven by a number of general, non- tissue-specific, master transcriptional regulators. The reverse process, the mesenchymal-to epithelial transition (MET), as yet much less characterized at a molecular level, restores specific epithelial identities, and thus, must include tissue-specific master elements. In this review, we will summarize the so far unveiled events of EMT/MET occurring in liver cells. In particular, we will focus on hepatocyte and describe the pivotal role in the control of EMT/MET dynamics exerted by a tissue-specific molecular mini-circuitry. Recent evidence, indeed, highlighted as two transcriptional factors, the master gene of EMT Snail, and the master gene of hepatocyte differentiation HNF4α, exhorting a direct reciprocal repression, act as pivotal elements in determining opposite cellular outcomes. The different balances between these two master regulators, further integrated by specific microRNAs, in fact, were found responsible for the EMT/METs dynamics as well as for the preservation of both hepatocyte and stem/precursor cells identity and differentiation. Overall these findings impact the maintenance of stem cells and differentiated cells both in in vivo EMT/MET physio-pathological processes as well as in culture.The complex spatial and paracrine relationships between the various liver histotypes are essential for proper functioning of the hepatic parenchymal cells. Only within a correct tissue organization, in fact, they stably maintain their identity and differentiated phenotype. The loss of histotype identity, which invariably occurs in the primary hepatocytes in culture, or in vivo in particular pathological conditions (fibrosis and tumors), is mainly due to the phenomenon of epithelial-to-mesenchymal transition (EMT). The EMT process, that occurs in the many epithelial cells, appears to be driven by a number of general, non- tissue-specific, master transcriptional regulators. The reverse process, the mesenchymal-to epithelial transition (MET), as yet much less characterized at a molecular level, restores specific epithelial identities, and thus, must include tissue-specific master elements. In this review, we will summarize the so far unveiled events of EMT/MET occurring in liver cells. I
Progress and status of APEmille
We report on the progress and status of the APEmille project: a SIMD parallel
computer with a peak performance in the TeraFlops range which is now in an
advanced development phase. We discuss the hardware and software architecture,
and present some performance estimates for Lattice Gauge Theory (LGT)
applications.Comment: Talk presented at LATTICE97, 3 pages, Late
Integrating Biological Advances Into the Clinical Management of Breast Cancer Related Lymphedema
Breast cancer-related lymphedema (BCRL) occurs in a significant number of breast cancer survivors as a consequence of the axillary lymphatics' impairment after therapy (mainly axillary surgery and irradiation). Despite the recent achievements in the clinical management of these patients, BCRL is often diagnosed at its occurrence. In most cases, it remains a progressive and irreversible condition, with dramatic consequences in terms of quality of life and on sanitary costs. There are still no validated pre-surgical strategies to identify individuals that harbor an increased risk of BCRL. However, clinical, therapeutic, and tumor-specific traits are recurrent in these patients. Over the past few years, many studies have unraveled the complexity of the molecular and transcriptional events leading to the lymphatic system ontogenesis. Additionally, molecular insights are coming from the study of the germline alterations involved at variable levels in BCRL models. Regrettably, there is a substantial lack of predictive biomarkers for BCRL, given that our knowledge of its molecular milieu remains extremely puzzled. The purposes of this review were (i) to outline the biology underpinning the ontogenesis of the lymphatic system; (ii) to assess the current state of knowledge of the molecular alterations that can be involved in BCRL pathogenesis and progression; (iii) to discuss the present and short-term future perspectives in biomarker-based patients' risk stratification; and (iv) to provide practical information that can be employed to improve the quality of life of these patients
Detection of anti-SARS CoV-2 antibodies in human serum by means of Bloch surface waves on 1D photonic crystal biochips
This study presents the development and characterization of a disposable biochip for the detection of antibodies against the SARS-CoV-2 spike protein, a well-known target for vaccine and therapeutic development. This biochip is based on a one-dimensional photonic crystal (1DPC) deposited on a plastic substrate and designed to sustain Bloch surface waves (BSW) in the visible range. The experimental phase was carried out using the biochip in conjunction with a custom-made optical read-out platform capable of real-time refractometric detection and fluorescence-based end-point measurements. Our biochip was functionalized by immobilizing the receptor-binding domain of the spike protein onto the surface using a silanization process. Human serum samples, including a negative control and a positive sample from a recovered COVID-19 patient, were tested on the biochip. The experimental results show that the biochip discriminates between positive and negative samples in a label-free refractometric mode down to a 1:10 dilution of the sera and in quantum dot amplified refractometric and fluorescence mode down to 1:100 dilution. The results demonstrate the potential of the disposable biochip for sensitive and specific detection of COVID-19 antibodies
Molecular robots guided by prescriptive landscapes
Traditional robots rely for their function on computing, to store internal representations of their goals and environment and to coordinate sensing and any actuation of components required in response. Moving robotics to the single-molecule level is possible in principle, but requires facing the limited ability of individual molecules to store complex information and programs. One strategy to overcome this problem is to use systems that can obtain complex behaviour from the interaction of simple robots with their environment. A first step in this direction was the development of DNA walkers, which have developed from being non-autonomous, to being capable of directed but brief motion on one-dimensional tracks. Here we demonstrate that previously developed random walkers—so-called molecular spiders that comprise a streptavidin molecule as an inert ‘body’ and three deoxyribozymes as catalytic ‘legs’—show elementary robotic behaviour when interacting with a precisely defined environment. Single-molecule microscopy observations confirm that such walkers achieve directional movement by sensing and modifying tracks of substrate molecules laid out on a two-dimensional DNA origami landscape. When using appropriately designed DNA origami, the molecular spiders autonomously carry out sequences of actions such as ‘start’, ‘follow’, ‘turn’ and ‘stop’. We anticipate that this strategy will result in more complex robotic behaviour at the molecular level if additional control mechanisms are incorporated. One example might be interactions between multiple molecular robots leading to collective behaviour; another might be the ability to read and transform secondary cues on the DNA origami landscape as a means of implementing Turing-universal algorithmic behaviour
Label-free and fluorescence biosensing platform using one dimensional photonic crystal chips
The increasing demand for early detection of diseases drives the efforts to develop more and more sensitive techniques to detect biomarkers in extremely low concentrations. Electromagnetic modes at the surface of one dimensional photonic crystals, usually called Bloch surface waves, were demonstrated to enhance the resolution and constitute an attractive alternative to surface plasmon polariton optical biosensors. We report on the development of Bloch surface wave biochips operating in both label-free and fluorescence modes and demonstrate their use in ovalbumin recognition assays
The Future of Our Seas: Marine scientists and creative professionals collaborate for science communication
To increase awareness of the current challenges facing the marine environment,
the Future of Our Seas (FOOS) project brought together the expertise of
scientists, public engagement experts and creatives to train and support a
group of marine scientists in effective science communication and innovative
public engagement. This case study aims to inspire scientists and artists to
use the FOOS approach in training, activity design and development support
(hereafter called the ‘FOOS programme’) to collaboratively deliver novel
and creative engagement activities. The authors reflect on the experiences
of the marine scientists: (1) attending the FOOS communication and
engagement training; (2) creating and delivering public engagement activities;
(3) understanding our audience; and (4) collaborating with artists. The authors
also share what the artists and audiences learned from participating in the
FOOS public engagement activities. These different perspectives provide new
insights for the field with respect to designing collaborative training which
maximizes the impact of the training on participants, creative collaborators and
the public. Long-term benefits of taking part in the FOOS programme, such as
initiating future collaborative engagement activities and positively impacting
the scientists’ research processes, are also highlighted
Elaboração de doces utilizando batata-doce biofortificada cv. Beauregard.
A batata-doce cv. Beauregard é biofortificada e apresenta maiores teores de carotenoides (pró vitamina A). Dessa forma, foram elaboradas duas formulações de doces utilizando a batata-doce cv. Beauregard. Conclui-se que a elaboração de doces com batata-doce biofortificada é uma alternativa viável para a inserção de doces mais saudáveis na alimentação suprindo desta forma a carência de vitaminas e minerais
- …