947 research outputs found

    Cross sections for short pulse single and double ionization of helium

    Get PDF
    In a previous publication, procedures were proposed for unambiguously extracting amplitudes for single and double ionization from a time-dependent wavepacket by effectively propagating for an infinite time following a radiation pulse. Here we demonstrate the accuracy and utility of those methods for describing two-photon single and one-photon double ionization of helium. In particular it is shown how narrow features corresponding to autoionizing states are easily resolved with these methods.Comment: 9 pages, 9 figure

    Decoding sequential vs non-sequential two-photon double ionization of helium using nuclear recoil

    Get PDF
    Above 54.4 eV, two-photon double ionization of helium is dominated by a sequential absorption process, producing characteristic behavior in the single and triple differential cross sections. We show that the signature of this process is visible in the nuclear recoil cross section, integrated over all energy sharings of the ejected electrons, even below the threshold for the sequential process. Since nuclear recoil momentum imaging does not require coincident photoelectron measurement, the predicted images present a viable target for future experiments with new short-pulse VUV and soft X-ray sources.Comment: 4 pages, 3 figure

    A simple method for evaluating low-energy electron-molecule scattering cross sections using discrete basis functions

    Get PDF
    We present a simple, approximate method for calculating low-energy electron-molecule scattering cross sections using only the results of a basis set diagonalization of the molecular Hamiltonian. The method is based on the approximate conservation of orbital angular momentum in collisions between slow electrons and molecules lacking a permanent dipole moment (low l spoiling). Results are presented for e--H2, and e--N2, in the static-exchange approximation

    A relationship between the many-body theory of inelastic scattering and the distorted wave approximation

    Get PDF
    It is shown that the first-order results of the recent many-body theory of inelastic scattering (see abstr. A25430 of 1971) can be derived by a direct application of the distorted-wave and random phase approximations to the usual expression for the inelastic scattering amplitude. The result is derived both in the second quantized formalism and by the standard application of the distorted-wave approximation coupled with the random phase approximation (RPA). The RPA (or time-dependent Hartree-Fock theory) provides the transition density between the initial and inelastically excited states. Possible generalizations of the procedures are discussed

    Cross sections for the elastic scattering of low-energy electrons by molecular fluorine: an approximate theoretical treatment using discrete basis functions

    Get PDF
    Phaseshifts and total cross sections for the elastic scattering of low-energy (0-13.6 eV) electrons by molecular fluorine are presented. The phaseshifts are obtained by an approximate technique based on the weak asymptotic coupling of orbital angular momenta and are calculated solely from the results of a discrete basis set diagonalization of the molecular Hamiltonian. Correlation and polarization effects are not treated. The elastic cross section is dominated by a Sigma u+ shape resonance at about 2.2 eV in the static-exchange model

    Successful Treatment of Primary Vaginal Papillary Serous Adenocarcinoma Using Chemoradiation Followed by Brachytherapy

    Get PDF
    Advances in treatment have not recently been reported in rare primary vaginal adenocarcinomas. A 56-year-old woman with a chronic vaginal cyst and possible in utero diethylstilbestrol exposure presented with postmenopausal bleeding. Biopsy of the vagina revealed high-grade papillary serous adenocarcinoma. MRI showed a 6-cm vaginal tumor and 3-cm left inguinal lymph node with metastasis. The patient initially received concurrent cisplatin and radiation. She then received high-dose-rate brachytherapy for further local control. Brachytherapy following external beam radiation with concurrent cisplatin led to clinically undetectable cancer at 24 months with minimal side effects
    • …
    corecore