764 research outputs found

    Evolution of crystalline electric field effects, superconductivity, and heavy fermion behavior in the specific heat of Pr(Os1x_{1-x}Rux_x)4_4Sb12_{12}

    Full text link
    Specific heat C(T)C(T) measurements were made on single crystals of the superconducting filled skutterudite series Pr(Os1x_{1-x}Rux_x)4_4Sb12_{12} down to 0.6 K. Crystalline electric field fits in the normal state produced parameters which were in agreement with previous measurements. Bulk superconductivity was observed for all values of the Ru concentration xx with transition temperatures consistent with previous experiments, confirming a minimum in TcT_{c} at x=0.6x=0.6. The C(T)C(T) data below TcT_{c} appear to be more consistent with power law behavior for x=0x=0 (PrOs4_4Sb12_{12}), and with exponential behavior for 0.05x0.20.05 \leq x \leq 0.2. An enhanced electronic specific heat coefficient γ\gamma was observed for x0.4x \leq 0.4, further supporting x0.6x \simeq 0.6 as a critical concentration where the physical properties abruptly change. Significant enhancement of ΔC/Tc\Delta C/T_{c} above the weak coupling value was only observed for x=0x=0 and x=0.05x=0.05.Comment: 16 pages, 5 figures, submitted to Physical Review B. v2: text added and figures modifie

    Crystalline electric field effects in the electrical resistivity of PrOs4_4Sb12_{12}

    Full text link
    The temperature TT and magnetic field HH dependencies of the electrical resistivity ρ\rho of the recently discovered heavy fermion superconductor \PrOsSb{} have features that are associated with the splitting of the Pr3+^{3+} Hund's rule multiplet by the crystalline electric field (CEF). These features are apparently due to magnetic exchange and aspherical Coulomb scattering from the thermally populated CEF-split Pr3+^{3+} energy levels. The ρ(T)\rho(T) data in zero magnetic field can be described well by calculations based on CEF theory for various ratios of magnetic exchange and aspherical Coulomb scattering, and yield CEF parameters that are qualitatively consistent with those previously derived from magnetic susceptibility, specific heat, and inelastic neutron scattering measurements. Calculated ρ(H)\rho(H) isotherms for a Γ3\Gamma_{3} ground state qualitatively account for the `dome-shaped' feature in the measured ρ(H)\rho(H) isotherms.Comment: 8 pages, 2 figures, submitted to Journal of Physics: Condensed Matte

    Competing Ordered Phases in URu2Si2: Hydrostatic Pressure and Re-substitution

    Full text link
    A persistent kink in the pressure dependence of the \hidden order" (HO) transition temperature of URu2-xRexSi2 is observed at a critical pressure Pc=15 kbar for 0 < x < 0.08. In URu2Si2, the kink at Pc is accompanied by the destruction of superconductivity; a change in the magnitude of a spin excitation gap, determined from electrical resistivity measurements; and a complete gapping of a portion of the Fermi surface (FS), inferred from a change in scattering and the competition between the HO state and superconductivity for FS fraction

    Superconductivity, magnetic order, and quadrupolar order in the filled skutterudite system Pr1x_{1-x}Ndx_{x}Os4_4Sb12_{12}

    Full text link
    Superconductivity, magnetic order, and quadrupolar order have been investigated in the filled skutterudite system Pr1x_{1-x}Ndx_{x}Os4_4Sb12_{12} as a function of composition xx in magnetic fields up to 9 tesla and at temperatures between 50 mK and 10 K. Electrical resistivity measurements indicate that the high field ordered phase (HFOP), which has been identified with antiferroquadruoplar order, persists to xx \sim 0.5. The superconducting critical temperature TcT_c of PrOs4_4Sb12_{12} is depressed linearly with Nd concentration to xx \sim 0.55, whereas the Curie temperature TFMT_{FM} of NdOs4_4Sb12_{12} is depressed linearly with Pr composition to (1x1-x) \sim 0.45. In the superconducting region, the upper critical field Hc2(x,0)H_{c2}(x,0) is depressed quadratically with xx in the range 0 << xx \lesssim 0.3, exhibits a kink at xx \approx 0.3, and then decreases linearly with xx in the range 0.3 \lesssim xx \lesssim 0.6. The behavior of Hc2(x,0)H_{c2}(x,0) appears to be due to pair breaking caused by the applied magnetic field and the exhange field associated with the polarization of the Nd magnetic moments, in the superconducting state. From magnetic susceptibility measurements, the correlations between the Nd moments in the superconducting state appear to change from ferromagnetic in the range 0.3 \lesssim xx \lesssim 0.6 to antiferromagnetic in the range 0 << xx \lesssim 0.3. Specific heat measurements on a sample with xx == 0.45 indicate that magnetic order occurs in the superconducting state, as is also inferred from the depression of Hc2(x,0)H_{c2}(x,0) with xx.Comment: 7 pages, 7 figures, currently submitted to Phys. Rev.

    The suppression of hidden order and onset of ferromagnetism in URu2Si2 via Re substitution

    Full text link
    Substitution of Re for Ru in the heavy fermion compound URu2Si2 suppresses the hidden order transition and gives rise to ferromagnetism at higher concentrations. The hidden order transition of URu(2-x)Re(x)Si2, tracked via specific heat and electrical resistivity measurements, decreases in temperature and broadens, and is no longer observed for x>0.1. A critical scaling analysis of the bulk magnetization indicates that the ferromagnetic ordering temperature and ordered moment are suppressed continuously towards zero at a critical concentration of x = 0.15, accompanied by the additional suppression of the critical exponents gamma and (delta-1) towards zero. This unusual trend appears to reflect the underlying interplay between Kondo and ferromagnetic interactions, and perhaps the proximity of the hidden order phase.Comment: 8 pgs, 5 figs, ICM 2009; please refer to Phys. Rev. Lett. 103, 076404 (2009), arXiv:0908.1809 for details on magnetic scaling and phase diagram (reference added to this version

    Magnetic-field-induced supercurrent enhancement in hybrid superconductor/magnetic metal structures

    Full text link
    The dc transport properties of the (S/M)I(M/S) tunnel structure - proximity coupled superconductor (S) and magnetic (M) layers separated by an insulator (I) - in a parallel magnetic field have been investigated. We choose for the M metal the one in which the effective magnetic interaction, whether it arises from direct exchange interaction or due to configuration mixing, aligns spins of the conducting electrons antiparallel to the localized spins of magnetic ions. For tunnel structures under consideration, we predict that there are the conditions when the destructive action of the internal and applied magnetic fields on Cooper pairs is weakened and the increase of the applied magnetic field causes the field-induced enhancement of the tunnel critical current. The experimental realization of the novel interesting effect of the interplay between superconducting and magnetic orders is also discussed.Comment: 6 pages 2 figure

    A mobile agent strategy for grid interoperable virtual organisations

    Get PDF
    During the last few years much effort has been put into developing grid computing and proposing an open and interoperable framework for grid resources capable of defining a decentralized control setting. Such environments may define new rules and actions relating to internal Virtual Organisation (VO) members and therefore posing new challenges towards to an extended cooperation model of grids. More specifically, VO policies from the viewpoint of internal knowledge and capabilities may be expressed in the form of intelligent agents thus providing a more autonomous solution of inter-communicating members. In this paper we propose an interoperable mobility agent model that performs migration to any interacting VO member and by traveling within each domain allows the discovery of resources dynamically. The originality of our approach is the mobility mechanism based on traveling and migration which stores useful information during the route to each visited individual. The method is considered under the Foundation for Intelligent Physical Agents (FIPA) standard which provides an on demand resource provisioning model for autonomous mobile agents. Finally the decentralization of the proposed model is achieved by providing each member with a public profile of personal information which is available upon request from any interconnected member during the resource discovery process
    corecore