4,222 research outputs found

    Effects of nanoscale spatial inhomogeneity in strongly correlated systems

    Full text link
    We calculate ground-state energies and density distributions of Hubbard superlattices characterized by periodic modulations of the on-site interaction and the on-site potential. Both density-matrix renormalization group and density-functional methods are employed and compared. We find that small variations in the on-site potential viv_i can simulate, cancel, or even overcompensate effects due to much larger variations in the on-site interaction UiU_i. Our findings highlight the importance of nanoscale spatial inhomogeneity in strongly correlated systems, and call for reexamination of model calculations assuming spatial homogeneity.Comment: 5 pages, 1 table, 4 figures, to appear in PR

    Patterns and trends in esophageal cancer mortality and incidence in Europe (1980-2011) and predictions to 2015

    Get PDF
    Long-term decreasing trends were observed for male esophageal cancer mortality in several southern and western European countries, but less so in northern and eastern Europe; persisting favorable trends are predicted up to 2015. Among women mortality remained comparatively low. The observed trends are in accordance with variations in alcohol drinking, tobacco smoking and overweight across Europ

    The Critical Behaviour of Potts models with symmetry breaking fields

    Full text link
    The QQ-state Potts model in two dimensions in the presence of external magnetic fields is studied. For general Q3Q\geq3 special choices of these magnetic fields produce effective models with smaller Z(Q)Z(Q') symmetry (Q<Q)(Q'< Q). The phase diagram of these models and their critical behaviour are explored by conventional finite-size scaling and conformal invariance. The possibility of multicritical behavior, for finite values of the symmetry breaking fields, in the cases where Q>4Q>4 is also analysed. Our results indicate that for effective models with Z(Q)Z(Q') symmetry (Q4)(Q'\leq4) the multicritical point occurs at zero field. This last result is also corroborated by Monte Carlo simulations.Comment: 15 pages (standart LaTex), 2 figure (PostScript) available by request to [email protected]

    Critical Behaviour of Mixed Heisenberg Chains

    Full text link
    The critical behaviour of anisotropic Heisenberg models with two kinds of antiferromagnetically exchange-coupled centers are studied numerically by using finite-size calculations and conformal invariance. These models exhibit the interesting property of ferrimagnetism instead of antiferromagnetism. Most of our results are centered in the mixed Heisenberg chain where we have at even (odd) sites a spin-S (S') SU(2) operator interacting with a XXZ like interaction (anisotropy Δ\Delta). Our results indicate universal properties for all these chains. The whole phase, 1>Δ>11>\Delta>-1, where the models change from ferromagnetic (Δ=1)( \Delta=1 ) to ferrimagnetic (Δ=1)(\Delta=-1) behaviour is critical. Along this phase the critical fluctuations are ruled by a c=1 conformal field theory of Gaussian type. The conformal dimensions and critical exponents, along this phase, are calculated by studying these models with several boundary conditions.Comment: 21 pages, standard LaTex, to appear in J.Phys.A:Math.Ge

    The Critical Behaviour of the Spin-3/2 Blume-Capel Model in Two Dimensions

    Full text link
    The phase diagram of the spin-3/2 Blume-Capel model in two dimensions is explored by conventional finite-size scaling, conformal invariance and Monte Carlo simulations. The model in its τ\tau-continuum Hamiltonian version is also considered and compared with others spin-3/2 quantum chains. Our results indicate that differently from the standard spin-1 Blume-Capel model there is no multicritical point along the order-disorder transition line. This is in qualitative agreement with mean field prediction but in disagreement with previous approximate renormalization group calculations. We also presented new results for the spin-1 Blume-Capel model.Comment: latex 18 pages, 4 figure

    Phase Separation in Electronic Models for Manganites

    Full text link
    The Kondo lattice Hamiltonian with ferromagnetic Hund's coupling as a model for manganites is investigated. The classical limit for the spin of the (localized) t2gt_{2g} electrons is analyzed on lattices of dimension 1,2,3 and \infty using several numerical methods. The phase diagram at low temperature is presented. A regime is identified where phase separation occurs between hole undoped antiferromagnetic and hole-rich ferromagnetic regions. Experimental consequences of this novel regime are discussed. Regions of incommensurate spin correlations have also been found. Estimations of the critical temperature in 3D are compatible with experiments.Comment: Accepted in Phys. Rev. Letter

    PAMELA Measurements of Cosmic-ray Proton and Helium Spectra

    Get PDF
    Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in the Galaxy. We report precision measurements of the proton and helium spectra in the rigidity range 1 GV-1.2 TV performed by the satellite-borne experiment PAMELA. We find that the spectral shapes of these two species are different and cannot be well described by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.Comment: 13 pages, 4 figures, link to SOM (with tables) in the references. This manuscript has been accepted for publication in Science. This version has not undergone final editing. Please refer to the complete version of record at http://www.sciencemag.org/ [www.sciencemag.org

    The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV

    Full text link
    Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray electrons have been identified above 50 GeV. The electron spectrum can be described with a single power law energy dependence with spectral index -3.18 +- 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.Comment: 11 pages, 3 figures, accepted for publication in PR
    corecore