36 research outputs found

    Evidence-Based Guideline on Laparoscopy in Pregnancy: Commissioned by the British Society for Gynaecological Endoscopy (BSGE) Endorsed by the Royal College of Obstetricians & Gynaecologists (RCOG).

    Get PDF
    Laparoscopy is widely utilised to diagnose and treat acute and chronic, gynaecological and general surgical conditions. It has only been in recent years that laparoscopy has become an acceptable surgical alternative to open surgery in pregnancy. To date there is little clinical guidance pertaining to laparoscopic surgery in pregnancy. This is why the BSGE commissioned this guideline. MEDLINE, EMBASE, CINAHL and the Cochrane library were searched up to February 2017 and evidence was collated and graded following the NICE-approved process. The conditions included in this guideline are laparoscopic management of acute appendicitis, acute gall bladder disease and symptomatic benign adnexal tumours in pregnancy. The intended audience for this guideline is obstetricians and gynaecologists in secondary and tertiary care, general surgeons and anaesthetists. However, only laparoscopists who have adequate laparoscopic skills and who perform complex laparoscopic surgery regularly should undertake laparoscopy in pregnant women, since much of the evidence stems from specialised centres

    Dynamic Regulation of Oct1 during Mitosis by Phosphorylation and Ubiquitination

    Get PDF
    Transcription factor Oct1 regulates multiple cellular processes. It is known to be phosphorylated during the cell cycle and by stress, however the upstream kinases and downstream consequences are not well understood. One of these modified forms, phosphorylated at S335, lacks the ability to bind DNA. Other modification states besides phosphorylation have not been described.We show that Oct1 is phosphorylated at S335 in the Oct1 DNA binding domain during M-phase by the NIMA-related kinase Nek6. Phospho-Oct1 is also ubiquitinated. Phosphorylation excludes Oct1 from mitotic chromatin. Instead, Oct1(pS335) concentrates at centrosomes, mitotic spindle poles, kinetochores and the midbody. Oct1 siRNA knockdown diminishes the signal at these locations. Both Oct1 ablation and overexpression result in abnormal mitoses. S335 is important for the overexpression phenotype, implicating this residue in mitotic regulation. Oct1 depletion causes defects in spindle morphogenesis in Xenopus egg extracts, establishing a mitosis-specific function of Oct1. Oct1 colocalizes with lamin B1 at the spindle poles and midbody. At the midbody, both proteins are mutually required to correctly localize the other. We show that phospho-Oct1 is modified late in mitosis by non-canonical K11-linked polyubiquitin chains. Ubiquitination requires the anaphase-promoting complex, and we further show that the anaphase-promoting complex large subunit APC1 and Oct1(pS335) interact.These findings reveal mechanistic coupling between Oct1 phosphorylation and ubquitination during mitotic progression, and a role for Oct1 in mitosis

    The E1A-Associated p400 Protein Modulates Cell Fate Decisions by the Regulation of ROS Homeostasis

    Get PDF
    The p400 E1A-associated protein, which mediates H2A.Z incorporation at specific promoters, plays a major role in cell fate decisions: it promotes cell cycle progression and inhibits induction of apoptosis or senescence. Here, we show that p400 expression is required for the correct control of ROS metabolism. Depletion of p400 indeed increases intracellular ROS levels and causes the appearance of DNA damage, indicating that p400 maintains oxidative stress below a threshold at which DNA damages occur. Suppression of the DNA damage response using a siRNA against ATM inhibits the effects of p400 on cell cycle progression, apoptosis, or senescence, demonstrating the importance of ATM–dependent DDR pathways in cell fates control by p400. Finally, we show that these effects of p400 are dependent on direct transcriptional regulation of specific promoters and may also involve a positive feedback loop between oxidative stress and DNA breaks since we found that persistent DNA breaks are sufficient to increase ROS levels. Altogether, our results uncover an unexpected link between p400 and ROS metabolism and allow deciphering the molecular mechanisms largely responsible for cell proliferation control by p400

    A novel role for BRCA1 in regulating breast cancer cell spreading and motility

    No full text
    BRCA1 C-terminal (BRCT) domains in BRCA1 are essential for tumor suppressor function, though the underlying mechanisms remain unclear. We identified ezrin, radixin, and moesin as BRCA1 BRCT domain-interacting proteins. Ezrin-radixin-moesin (ERM) and F-actin colocalized with BRCA1 at the plasma membrane (PM) of cancer cells, especially at leading edges and focal adhesion sites. In stably expressing cancer cells, high levels of enhanced green fluorescent protein (EGFP)-BRCA1 1634-1863 acted as a dominant-negative factor, displacing endogenous BRCA1 from the PM. This led to delayed cell spreading, increased spontaneous motility, and irregular monolayer wound healing. MCF-7 cells (intact BRCA1) showed lower motility than HCC1937 cells (truncated BRCA1), but expression of EGFP-BRCA1 1634-1863 in MCF-7 increased motility. Conversely, full-length BRCA1 expression in HCC1937 decreased motility but only if the protein retained ubiquitin ligase activity. We conclude that full-length BRCA1 is important for complete tumor suppressor activity via interaction of its BRCT domains with ERM at the PM, controlling spreading and motility of cancer cells via ubiquitin ligase activity

    Rodent-borne diseases and their risks for public health

    Get PDF
    Rodents are the most abundant and diversified order of living mammals in the world. Already since the Middle Ages we know that they can contribute to human disease, as black rats were associated with distribution of plague. However, also in modern times rodents form a threat for public health. In this review article a large number of pathogens that are directly or indirectly transmitted by rodents are described. Moreover, a simplified rodent disease model is discussed

    In-hospital mortality in SARS-CoV-2 stratified by gamma-glutamyl transferase levels

    No full text
    Background: This study investigates in-hospital mortality amongst patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its relation to serum levels of gamma-glutamyl transferase (GGT). Methods: Patients were stratified according to serum levels of gamma-glutamyl transferase (GGT) (GGT<50 IU/L or GGT≥50 IU/L). Results: A total of 802 participants were considered, amongst whom 486 had GGT<50 IU/L and a mean age of 48.1 (16.5) years, whilst 316 had GGT≥50 IU/L and a mean age of 53.8 (14.7) years. The chief sources of SARS-CoV-2 transmission were contact (366, 45.7%) and community (320, 40%). Most patients with GGT≥50 IU/L had either pneumonia (247, 78.2%) or acute respiratory distress syndrome (ARDS) (85, 26.9%), whilst those with GGT<50 IU/L had hypertension (141, 29%) or diabetes mellitus (DM) (147, 30.2%). Mortality was higher amongst patients with GGT≥50 IU/L (54, 17.1%) than amongst those with GGT<50 IU/L (29, 5.9%). More patients with GGT≥50 required high (83, 27.6%) or low (104, 34.6%) levels of oxygen, whereas most of those with GGT<50 had no requirement of oxygen (306, 71.2%). Multivariable logistic regression analysis indicated that GGT≥50 IU/L (odds ratio [OR]: 2.02, 95% confidence interval [CI]: 1.20–3.45, p=0.009), age (OR: 1.05, 95% CI: 1.03–1.07, p<0.001), hypertension (OR: 2.06, 95% CI: 1.19–3.63, p=0.011), methylprednisolone (OR: 2.96, 95% CI: 1.74–5.01, p<0.001) and fever (OR: 2.03, 95% CI: 1.15–3.68, p=0.016) were significant predictors of all-cause cumulative mortality. A Cox proportional hazards regression model (B = −0.68, SE =0.24, HR =0.51, p = 0.004) showed that patients with GGT<50 IU/L had a 0.51-times lower risk of all-cause cumulative mortality than patients with GGT≥50 IU/L. Conclusion: Higher levels of serum GGT were found to be an independent predictor of in-hospital mortality. © 2022 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC
    corecore