342 research outputs found

    INTEGRAL observation of 3EG J1736-2908

    Get PDF
    The possible identification by INTEGRAL of the EGRET source 3EG J1736-2908 with the active galactic nucleus GRS 1734-292 is discussed. The latter was discovered in 1990 and later identified with a Seyfert 1 galaxy. At the time of the compilation of the 3rd EGRET Catalog, it was not considered as a possible counterpart of the source 3EG J1736-2908, which remained unidentified. A detailed multiwavelength study of the EGRET error circle is presented, by including archival radio, soft- and hard-X observations, suggesting that GRS 1734-292 could be a likely counterpart of 3EG J1736-2908, even though this poses very interesting questions about the production mechanisms of gamma-rays with energies greater than 100 MeV.Comment: 6 pages, 3 figures. Accepted for publication on A&A Main Journa

    Probing the Complex and Variable X-ray Absorption of Markarian 6 with XMM-Newton

    Full text link
    We report on an X-ray observation of the Seyfert 1.5 galaxy Mrk 6 obtained with the EPIC instruments onboard XMM-Newton. Archival BeppoSAX PDS data from 18-120 keV were also used to constrain the underlying hard power-law continuum. The results from our spectral analyses generally favor a double partial-covering model, although other spectral models such as absorption by a mixture of partially ionized and neutral gas cannot be firmly ruled out. Our best-fitting model consists of a power law with a photon index of 1.81+/-0.20 and partial covering with large column densities up to 10^{23} cm**-2. We also detect a narrow emission line consistent with Fe Kalpha fluorescence at 6.45+/-0.04 keV with an equivalent width of ~93+/-25 eV. Joint analyses of XMM-Newton, ASCA, and BeppoSAX data further provide evidence for both spectral variability (a factor of ~2 change in absorbing column) and absorption-corrected flux variations (by ~60%) during the ~4 year period probed by the observations.Comment: 7 pages, 2 figures. accepted for publication in the Astronomical Journa

    The Seyfert-Starburst Connection in X-rays. II. Results and Implications

    Get PDF
    We present the results of X-ray imaging and spectroscopic analysis of a sample of Seyfert 2 galaxies that contain starbursts, based on their optical and UV characteristics. These composite galaxies exhibit extended, soft, thermal X-ray emission, which we attribute to their starburst components. Comparing their X-ray and far-infrared properties with ordinary Seyfert and starburst galaxies, we identify the spectral characteristics of their various intrinsic emission sources. The observed far-infrared emission of the composite galaxies may be associated almost exclusively with star formation, rather than the active nucleus. The ratio of the hard X-ray luminosity to the far-infrared and [O III] 5007 luminosity distinguishes most of these composite galaxies from ``pure'' Seyfert 2 galaxies, while their total observed hard X-ray luminosity distinguishes them from ``pure'' starbursts. The hard nuclear X-ray source is generally heavily absorbed (N_H > 10^{23} cm^{-2}) in the composite galaxies. Based on these results, we suggest that the interstellar medium of the nuclear starburst is a significant source of absorption. The majority of the sample are located in groups or are interacting with other galaxies, which may trigger the starburst or allow rapid mass infall to the central black hole, or both. We conclude that starbursts are energetically important in a significant fraction of active galaxies, and starbursts and active galactic nuclei may be part of a common evolutionary sequence.Comment: 16 pages including 8 figures and 5 tables; to appear in the ApJ, Mar. 10, 200

    The Origin of the Silicate Emission Features in the Seyfert 2 Galaxy, NGC 2110

    Full text link
    The unified model of active galactic nuclei (AGN) predicts silicate emission features at 10 and 18 microns in type 1 AGN, and such features have now been observed in objects ranging from distant QSOs to nearby LINERs. More surprising, however, is the detection of silicate emission in a few type 2 AGN. By combining Gemini and Spitzer mid-infrared imaging and spectroscopy of NGC 2110, the closest known Seyfert 2 galaxy with silicate emission features, we can constrain the location of the silicate emitting region to within 32 pc of the nucleus. This is the strongest constraint yet on the size of the silicate emitting region in a Seyfert galaxy of any type. While this result is consistent with a narrow line region origin for the emission, comparison with clumpy torus models demonstrates that emission from an edge-on torus can also explain the silicate emission features and 2-20 micron spectral energy distribution of this object. In many of the best-fitting models the torus has only a small number of clouds along the line of sight, and does not extend far above the equatorial plane. Extended silicate-emitting regions may well be present in AGN, but this work establishes that emission from the torus itself is also a viable option for the origin of silicate emission features in active galaxies of both type 1 and type 2.Comment: ApJL, accepte

    Hard X-ray Luminosities of Multinuclei Infrared Luminous Galaxies Showing a Radio/Far-Infrared Excess

    Get PDF
    We report the results of hard X-ray observations of four multinuclei merging infrared luminous galaxies (IRLGs). We selected these four sources for their excess of radio to far-infrared luminosity ratio compared with starburst galaxies. This excess suggests that activity associated with a supermassive black hole (SMBH) contributes strongly to the IRLGs' bolometric luminosities. Although we expect strong hard X-ray emission from the SMBH-driven activity, the radio-excess multinuclei merging IRLGs show considerably smaller hard X-ray luminosities relative to far-infrared (40−-500 ÎŒ\mum) and infrared (8−-1000 ÎŒ\mum) luminosities than active galactic nuclei (AGNs) showing a similar radio-excess. This result may demonstrate that emission in the hard X-ray region from SMBH-driven activity in the multinuclei merging IRLGs is severely suppressed compared to a typical spectral energy distribution of SMBH-driven activity in AGNs. If this is a common property of merging IRLGs, without its correction, hard X-ray observations underestimate the contribution of SMBH-driven activity to the bolometric luminosities of merging IRLGs.Comment: 25 pages of text, 4 figures, aaspp4.sty, Astrophysical Journal, in press (1999, Volume 527
    • 

    corecore