198 research outputs found
Targeted radiotherapy of neuroblastoma: future directions
No abstract available
Can community volunteers work to trace patients defaulting from scheduled psychiatric clinic appointments?
Reproduced with permission of the publisher
Inhibition of Poly(ADP-Ribose) polymerase enhances the toxicity of 131I-Metaiodobenzylguanidine/Topotecan combination therapy to cells and xenografts that express the noradrenaline transporter
Targeted radiotherapy using [131I]meta-iodobenzylguanidine ([131I]MIBG) has produced remissions in some neuroblastoma patients. We previously reported that combining [131I]MIBG with the topoisomerase I (Topo-I) inhibitor topotecan induced long-term DNA damage and supra-additive toxicity to NAT-expressing cells and xenografts. This combination treatment is undergoing clinical evaluation. This present study investigated the potential of PARP-1 inhibition, in vitro and in vivo, to further enhance [131I]MIBG/topotecan efficacy
Inhibition of glycolysis and mitochondrial respiration promotes radiosensitisation of neuroblastoma and glioma cells
Background:
Neuroblastoma accounts for 7% of paediatric malignancies but is responsible for 15% of all childhood cancer deaths. Despite rigorous treatment involving chemotherapy, surgery, radiotherapy and immunotherapy, the 5-year overall survival rate of high-risk disease remains < 40%, highlighting the need for improved therapy. Since neuroblastoma cells exhibit aberrant metabolism, we determined whether their sensitivity to radiotherapy could be enhanced by drugs affecting cancer cell metabolism.
Methods:
Using a panel of neuroblastoma and glioma cells, we determined the radiosensitising effects of inhibitors of glycolysis (2-DG) and mitochondrial function (metformin). Mechanisms underlying radiosensitisation were determined by metabolomic and bioenergetic profiling, flow cytometry and live cell imaging and by evaluating different treatment schedules.
Results:
The radiosensitising effects of 2-DG were greatly enhanced by combination with the antidiabetic biguanide, metformin. Metabolomic analysis and cellular bioenergetic profiling revealed this combination to elicit severe disruption of key glycolytic and mitochondrial metabolites, causing significant reductions in ATP generation and enhancing radiosensitivity. Combination treatment induced G2/M arrest that persisted for at least 24 h post-irradiation, promoting apoptotic cell death in a large proportion of cells.
Conclusion:
Our findings demonstrate that the radiosensitising effect of 2-DG was significantly enhanced by its combination with metformin. This clearly demonstrates that dual metabolic targeting has potential to improve clinical outcomes in children with high-risk neuroblastoma by overcoming radioresistance
- âŠ