12 research outputs found

    Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    Get PDF
    UNLABELLED: N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT: CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants

    Trafficking of N-type voltage-gated calcium ion channels and their regulation by alternative splicing

    Get PDF
    N-type voltage-gated calcium (CaV2.2) channels are expressed predominantly in the central and peripheral nervous systems and play a crucial role in neurotransmitter release. Expression of these channels at the plasma membrane and in the membrane of presynaptic terminals is key for their function, however, how they are trafficked from the subcellular organelles is still poorly understood. In this study, trafficking of mutually-exclusive alternative splice variants of CaV2.2, containing either exon 37a or 37b at the proximal C-terminus and its mechanisms were examined. CaV2.2 with exon 37a (selectively expressed in nociceptors) reveals a significantly greater intracellular trafficking to the axons and plasma membrane of DRG neurons than CaV2.2 with exon 37b. Further examination of the amino acid sequence in exon 37 uncovers that the canonical binding motifs for adaptor protein 1 (AP-1), YxxΦ and [DE]xxxL[LI], present only in exon 37a are accountable for mediating the enhanced channel trafficking from the trans-Golgi network to the plasma membrane. Finally, the dopamine-2 receptor (D2R) and its agonist-induced activation, reveal differential effects on trafficking of these CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b but not exon 37a, and activation by the D2R-selective agonist quinpirole reversed the effect of the D2R. Disrupting the interaction between adaptor proteins and YxxΦ or [DE]xxxL[LI] in CaV2.2 perturbed these effects, suggesting that the interaction of adaptor proteins with CaV2.2 channels may also be key underlying mechanisms for differential trafficking of CaV2.2 splice variants, mediated by D2R. This study thus reveals key mechanisms involved in the trafficking of N-type calcium channels

    Using rapid damage observations for Bayesian updating of hurricane vulnerability functions: A case study of Hurricane Dorian using social media

    Get PDF
    Rapid impact assessments immediately after disasters are crucial to enable rapid and effective mobilization of resources for response and recovery efforts. These assessments are often performed by analysing the three components of risk: hazard, exposure and vulnerability. Vulnerability curves are often constructed using historic insurance data or expert judgments, reducing their applicability for the characteristics of the specific hazard and building stock. Therefore, this paper outlines an approach to the creation of event-specific vulnerability curves, using Bayesian statistics (i.e., the zero-one inflated beta distribution) to update a pre-existing vulnerability curve (i.e., the prior) with observed impact data derived from social media. The approach is applied in a case study of Hurricane Dorian, which hit the Bahamas in September 2019. We analysed footage shot predominantly from unmanned aerial vehicles (UAVs) and other airborne vehicles posted on YouTube in the first 10 days after the disaster. Due to its Bayesian nature, the approach can be used regardless of the amount of data available as it balances the contribution of the prior and the observations
    corecore