24 research outputs found
The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.
Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex
Spontaneous Ca2+ transients in rat pulmonary vein cardiomyocytes are increased in frequency and become more synchronous following electrical stimulation
The pulmonary veins have an external sleeve of cardiomyocytes that are a widely recognised source of ectopic electrical activity that can lead to atrial fibrillation. Although the mechanisms behind this activity are currently unknown, changes in intracellular calcium (Ca2+) signalling are purported to play a role. Therefore, the intracellular Ca2+ concentration was monitored in the pulmonary vein using fluo-4 and epifluorescence microscopy. Electrical field stimulation evoked a synchronous rise in Ca2+ in neighbouring cardiomyocytes; asynchronous spontaneous Ca2+ transients between electrical stimuli were also present. Immediately following termination of electrical field stimulation at 3 Hz or greater, the frequency of the spontaneous Ca2+ transients was increased from 0.45 ± 0.06 Hz under basal conditions to between 0.59 ± 0.05 and 0.65 ± 0.06 Hz (P<0.001). Increasing the extracellular Ca2+ concentration enhanced this effect, with the frequency of spontaneous Ca2+ transients increasing from 0.45 ± 0.05 Hz to between 0.75 ± 0.06 and 0.94 ± 0.09 Hz after electrical stimulation at 3 to 9 Hz (P<0.001), and this was accompanied by a significant increase in the velocity of Ca2+ transients that manifested as waves. Moreover, in the presence of high extracellular Ca2+, the spontaneous Ca2+ transients occurred more synchronously in the initial few seconds following electrical stimulation. The ryanodine receptors, which are the source of spontaneous Ca2+ transients in pulmonary vein cardiomyocytes, were found to be arranged in a striated pattern in the cell interior, as well as along the periphery of cell. Furthermore, labelling the sarcolemma with di-4-ANEPPS showed that over 90% of pulmonary vein cardiomyocytes possessed T-tubules. These findings demonstrate that the frequency of spontaneous Ca2+ transients in the rat pulmonary vein are increased following higher rates of electrical stimulation and increasing the extracellular Ca2+ concentration
Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins.
Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes
Activation of RyR2 by class I kinase inhibitors
Kinase inhibitors are a common treatment for cancer. Class I kinase inhibitors that target the ATP-binding pocket are particularly prevalent. Many of these compounds are cardiotoxic and can cause arrhythmias. Spontaneous release of Ca2+ via cardiac ryanodine receptors (RyR2), through a process termed store overload-induced Ca2+ release (SOICR), is a common mechanism underlying arrhythmia. We explored whether class I kinase inhibitors could modify the activity of RyR2 and trigger SOICR to determine if this contributes to the cardiotoxic nature of these compounds.Centro de Investigaciones Cardiovasculare
Measurement and Modeling of Ca2+ Waves in Isolated Rabbit Ventricular Cardiomyocytes
AbstractThe time course and magnitude of the Ca2+ fluxes underlying spontaneous Ca2+ waves in single permeabilized ventricular cardiomyocytes were derived from confocal Fluo-5F fluorescence signals. Peak flux rates via the sarcoplasmic reticulum (SR) release channel (RyR2) and the SR Ca2+ ATPase (SERCA) were not constant across a range of cellular [Ca2+] values. The Ca2+ affinity (Kmf) and maximum turnover rate (Vmax) of SERCA and the peak permeability of the RyR2-mediated Ca2+ release pathway increased at higher cellular [Ca2+] loads. This information was used to create a computational model of the Ca2+ wave, which predicted the time course and frequency dependence of Ca2+ waves over a range of cellular Ca2+ loads. Incubation of cardiomyocytes with the Ca2+ calmodulin (CaM) kinase inhibitor autocamtide-2-related inhibitory peptide (300 nM, 30 mins) significantly reduced the frequency of the Ca2+ waves at high Ca2+ loads. Analysis of the Ca2+ fluxes suggests that inhibition of CaM kinase prevented the increases in SERCA Vmax and peak RyR2 release flux observed at high cellular [Ca2+]. These data support the view that modification of activity of SERCA and RyR2 via a CaM kinase sensitive process occurs at higher cellular Ca2+ loads to increase the maximum frequency of spontaneous Ca2+ waves
Assessment of Sarcoplasmic Reticulum Ca2+ Depletion During Spontaneous Ca2+ Waves in Isolated Permeabilized Rabbit Ventricular Cardiomyocytes
AbstractIn this study, Ca2+ release due to spontaneous Ca2+ waves was measured both from inside the sarcoplasmic reticulum (SR) and from the cytosol of rabbit cardiomyocytes. These measurements utilized Fluo5N-AM for intra-SR Ca2+ from intact cells and Fluo5F in the cytosol of permeabilized cells. Restricted subcellular volumes were resolved with the use of laser-scanning confocal microscopy. Local Ca2+ signals during spontaneous Ca2+ release were compared with those induced by rapid caffeine application. The free cytoplasmic [Ca2+] increase during a Ca2+ wave was 98.1% ± 0.3% of that observed during caffeine application. Conversion to total Ca2+ release suggested that Ca2+ release from a Ca2+ wave was not significantly different from that released during caffeine application (104% ± 6%). In contrast, the maximum decrease in intra-SR Fluo-5N fluorescence during a Ca2+ wave was 82.5% ± 2.6% of that observed during caffeine application. Assuming a maximum free [Ca2+] of 1.1 mM, this translates to a 96.2% ± 0.8% change in intra-SR free [Ca2+] and a 91.7% ± 1.6% depletion of the total Ca2+. This equates to a minimum intra-SR free Ca2+ of 46 ± 7 μM during a Ca2+ wave. Reduction of RyR2 Ca2+ sensitivity by tetracaine (50 μM) reduced the spontaneous Ca2+ release frequency while increasing the Ca2+ wave amplitude. This did not significantly change the total depletion of the SR (94.5% ± 1.1%). The calculated minimum [Ca2+] during these Ca2+ waves (87 ± 19 μM) was significantly higher than control (p < 0.05). A computational model incorporating this level of Ca2+ depletion during a Ca2+ wave mimicked the transient and sustained effects of tetracaine on spontaneous Ca2+ release. In conclusion, spontaneous Ca2+ release results in substantial but not complete local Ca2+ depletion of the SR. Furthermore, measurements suggest that Ca2+ release terminates when luminal [Ca2+] reaches ∼50 μM
The effect of cytosolic Ca on spontaneous Ca wave characteristics in permeabilised cardiomyocytes from the rabbit
This meeting abstract looks at the effect of cytosolic Ca on spontaneous Ca wave characteristics in permeabilised cardiomyocytes from the rabbi
Unilateral arm strength training improves contralateral peak force and rate of force development
Neural adaptation following maximal strength training improves the ability to rapidly develop force. Unilateral strength training also leads to contralateral strength improvement, due to cross-over effects. However, adaptations in the rate of force development and peak force in the contralateral untrained arm after one-arm training have not been determined. Therefore, we aimed to detect contralateral effects of unilateral maximal strength training on rate of force development and peak force. Ten adult females enrolled in a 2-month strength training program focusing of maximal mobilization of force against near-maximal load in one arm, by attempting to move the given load as fast as possible. The other arm remained untrained. The training program did not induce any observable hypertrophy of any arms, as measured by anthropometry. Nevertheless, rate of force development improved in the trained arm during contractions against both submaximal and maximal loads by 40-60%. The untrained arm also improved rate of force development by the same magnitude. Peak force only improved during a maximal isometric contraction by 37% in the trained arm and 35% in the untrained arm. One repetition maximum improved by 79% in the trained arm and 9% in the untrained arm. Therefore, one-arm maximal strength training focusing on maximal mobilization of force increased rapid force development and one repetition maximal strength in the contralateral untrained arm. This suggests an increased central drive that also crosses over to the contralateral side
53 * altered CaMKII and ROS microdomains favor sparks in orphaned RyR after myocardial infarction
Purpose: In ventricular myocytes of rodents, ryanodine receptors (RyRs) are typically organized at Z-lines where the sarcoplasmic reticulum forms dyads with T-tubules (TTs). In large mammals, TT density is lower and not all RyRs are coupled to the TTs. Recently, we have shown that non-coupled RyRs lack a CaMKII and ROS-dependent microdomain modulation during rate adaptation. Here we examine how this microdomain modulation may be altered in ischemic cardiomyopathy where the fraction of non-coupled RyRs is increased.
Methods: Using an established pig model of chronic ischemia and myocardial infarction (MI, N=7), we studied myocytes adjacent to the MI and compared these to myocytes from SHAM pigs (N=5) using whole-cell voltage clamp with Fluo-4 as a [Ca2+]i indicator and confocal line scan imaging. Spontaneous Ca2+ sparks were recorded during a 15s period following stimulation and assigned to different subcellular regions categorized as coupled or non-coupled RyR using a specific algorithm. All data were obtained in at least 3 different animals.
Results: In myocytes from SHAM, we confirmed the specific modulation of coupled, but not of non-coupled, RyR as seen in control hearts, i.e. an increase of spark frequency at 2 Hz stimulation that is dependent on CaMKII and NOX2-generated ROS (#sparks/100 μm/s in SHAM: 0.8 ± 0.1 at 0.5 Hz to 2.3 ± 0.2 at 2 Hz, vs. 1.5 ± 0.2 with AIP at 2 Hz, and 1.1 ± 0.2 with gp91 ds-tat peptide at 2 Hz, p-value < 0.05 vs. control, n=7-14 in each group). In MI myocytes this modulation of coupled RyR was absent (#sparks/100 μm/s at 2 Hz not different from at 0.5 Hz and no effect of AIP and gp-91 ds-tat peptide). The fraction of non-coupled RyR was larger in MI (orphaned RyR) and their spark frequency at 2 Hz was significantly higher compared to SHAM. In contrast to SHAM, the response of these orphaned RyR was sensitive to CaMKII inhibition (AIP) (at 2 Hz #sparks/100 μm/s was 5.3 ± 0.5 at baseline vs. 3.1 ± 0.6 with AIP, p-value < 0.05, n=8-10 in each group). A significant reduction in spark frequency was observed in these orphaned RyRs after global ROS scavenging (NAC) (2 Hz #sparks/100 μm/s was 5.2 ± 0.5 at baseline vs. 2.9 ± 0.6 with NAC, p-value < 0.05, n=9-10 in each group) and after mitochondrial ROS inhibition using mitoTEMPO (at 2 Hz #sparks/100 μm/s was 2.9 ± 0.4 at baseline vs. 1.1 ± 0.3 with mitoTEMPO, p-value < 0.001, n=8 in each group) while NOX2 inhibition had no effect (gp91 ds-tat peptide, n=10–14).
Conclusion: After MI there is a novel RyR microdomain organization favoring sparks in orphaned RyR, possibly related to mitochondrial ROS production
