21 research outputs found

    Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins.

    Get PDF
    Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes

    Activation of RyR2 by class I kinase inhibitors

    Get PDF
    Kinase inhibitors are a common treatment for cancer. Class I kinase inhibitors that target the ATP-binding pocket are particularly prevalent. Many of these compounds are cardiotoxic and can cause arrhythmias. Spontaneous release of Ca2+ via cardiac ryanodine receptors (RyR2), through a process termed store overload-induced Ca2+ release (SOICR), is a common mechanism underlying arrhythmia. We explored whether class I kinase inhibitors could modify the activity of RyR2 and trigger SOICR to determine if this contributes to the cardiotoxic nature of these compounds.Centro de Investigaciones Cardiovasculare

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    The effect of cytosolic Ca on spontaneous Ca wave characteristics in permeabilised cardiomyocytes from the rabbit

    No full text
    This meeting abstract looks at the effect of cytosolic Ca on spontaneous Ca wave characteristics in permeabilised cardiomyocytes from the rabbi

    Measurement and Modeling of Ca2+ Waves in Isolated Rabbit Ventricular Cardiomyocytes

    Get PDF
    The time course and magnitude of the Ca2+ fluxes underlying spontaneous Ca2+ waves in single permeabilized ventricular cardiomyocytes were derived from confocal Fluo-5F fluorescence signals. Peak flux rates via the sarcoplasmic reticulum (SR) release channel (RyR2) and the SR Ca2+ ATPase (SERCA) were not constant across a range of cellular [Ca2+] values. The Ca2+ affinity (Kmf) and maximum turnover rate (Vmax) of SERCA and the peak permeability of the RyR2-mediated Ca2+ release pathway increased at higher cellular [Ca2+] loads. This information was used to create a computational model of the Ca2+ wave, which predicted the time course and frequency dependence of Ca2+ waves over a range of cellular Ca2+ loads. Incubation of cardiomyocytes with the Ca2+ calmodulin (CaM) kinase inhibitor autocamtide-2-related inhibitory peptide (300 nM, 30 mins) significantly reduced the frequency of the Ca2+ waves at high Ca2+ loads. Analysis of the Ca2+ fluxes suggests that inhibition of CaM kinase prevented the increases in SERCA Vmax and peak RyR2 release flux observed at high cellular [Ca2+]. These data support the view that modification of activity of SERCA and RyR2 via a CaM kinase sensitive process occurs at higher cellular Ca2+ loads to increase the maximum frequency of spontaneous Ca2+ waves

    Unilateral arm strength training improves contralateral peak force and rate of force development

    No full text
    Neural adaptation following maximal strength training improves the ability to rapidly develop force. Unilateral strength training also leads to contralateral strength improvement, due to cross-over effects. However, adaptations in the rate of force development and peak force in the contralateral untrained arm after one-arm training have not been determined. Therefore, we aimed to detect contralateral effects of unilateral maximal strength training on rate of force development and peak force. Ten adult females enrolled in a 2-month strength training program focusing of maximal mobilization of force against near-maximal load in one arm, by attempting to move the given load as fast as possible. The other arm remained untrained. The training program did not induce any observable hypertrophy of any arms, as measured by anthropometry. Nevertheless, rate of force development improved in the trained arm during contractions against both submaximal and maximal loads by 40-60%. The untrained arm also improved rate of force development by the same magnitude. Peak force only improved during a maximal isometric contraction by 37% in the trained arm and 35% in the untrained arm. One repetition maximum improved by 79% in the trained arm and 9% in the untrained arm. Therefore, one-arm maximal strength training focusing on maximal mobilization of force increased rapid force development and one repetition maximal strength in the contralateral untrained arm. This suggests an increased central drive that also crosses over to the contralateral side

    53 * altered CaMKII and ROS microdomains favor sparks in orphaned RyR after myocardial infarction

    No full text
    Purpose: In ventricular myocytes of rodents, ryanodine receptors (RyRs) are typically organized at Z-lines where the sarcoplasmic reticulum forms dyads with T-tubules (TTs). In large mammals, TT density is lower and not all RyRs are coupled to the TTs. Recently, we have shown that non-coupled RyRs lack a CaMKII and ROS-dependent microdomain modulation during rate adaptation. Here we examine how this microdomain modulation may be altered in ischemic cardiomyopathy where the fraction of non-coupled RyRs is increased. Methods: Using an established pig model of chronic ischemia and myocardial infarction (MI, N=7), we studied myocytes adjacent to the MI and compared these to myocytes from SHAM pigs (N=5) using whole-cell voltage clamp with Fluo-4 as a [Ca2+]i indicator and confocal line scan imaging. Spontaneous Ca2+ sparks were recorded during a 15s period following stimulation and assigned to different subcellular regions categorized as coupled or non-coupled RyR using a specific algorithm. All data were obtained in at least 3 different animals. Results: In myocytes from SHAM, we confirmed the specific modulation of coupled, but not of non-coupled, RyR as seen in control hearts, i.e. an increase of spark frequency at 2 Hz stimulation that is dependent on CaMKII and NOX2-generated ROS (#sparks/100 μm/s in SHAM: 0.8 ± 0.1 at 0.5 Hz to 2.3 ± 0.2 at 2 Hz, vs. 1.5 ± 0.2 with AIP at 2 Hz, and 1.1 ± 0.2 with gp91 ds-tat peptide at 2 Hz, p-value < 0.05 vs. control, n=7-14 in each group). In MI myocytes this modulation of coupled RyR was absent (#sparks/100 μm/s at 2 Hz not different from at 0.5 Hz and no effect of AIP and gp-91 ds-tat peptide). The fraction of non-coupled RyR was larger in MI (orphaned RyR) and their spark frequency at 2 Hz was significantly higher compared to SHAM. In contrast to SHAM, the response of these orphaned RyR was sensitive to CaMKII inhibition (AIP) (at 2 Hz #sparks/100 μm/s was 5.3 ± 0.5 at baseline vs. 3.1 ± 0.6 with AIP, p-value < 0.05, n=8-10 in each group). A significant reduction in spark frequency was observed in these orphaned RyRs after global ROS scavenging (NAC) (2 Hz #sparks/100 μm/s was 5.2 ± 0.5 at baseline vs. 2.9 ± 0.6 with NAC, p-value < 0.05, n=9-10 in each group) and after mitochondrial ROS inhibition using mitoTEMPO (at 2 Hz #sparks/100 μm/s was 2.9 ± 0.4 at baseline vs. 1.1 ± 0.3 with mitoTEMPO, p-value < 0.001, n=8 in each group) while NOX2 inhibition had no effect (gp91 ds-tat peptide, n=10–14). Conclusion: After MI there is a novel RyR microdomain organization favoring sparks in orphaned RyR, possibly related to mitochondrial ROS production

    Spontaneous Ca2+ transients in rat pulmonary vein cardiomyocytes are increased in frequency and become more synchronous following electrical stimulation

    Get PDF
    The pulmonary veins have an external sleeve of cardiomyocytes that are a widely recognised source of ectopic electrical activity that can lead to atrial fibrillation. Although the mechanisms behind this activity are currently unknown, changes in intracellular calcium (Ca2+) signalling are purported to play a role. Therefore, the intracellular Ca2+ concentration was monitored in the pulmonary vein using fluo-4 and epifluorescence microscopy. Electrical field stimulation evoked a synchronous rise in Ca2+ in neighbouring cardiomyocytes; asynchronous spontaneous Ca2+ transients between electrical stimuli were also present. Immediately following termination of electrical field stimulation at 3 Hz or greater, the frequency of the spontaneous Ca2+ transients was increased from 0.45 ± 0.06 Hz under basal conditions to between 0.59 ± 0.05 and 0.65 ± 0.06 Hz (P < 0.001). Increasing the extracellular Ca2+ concentration enhanced this effect, with the frequency of spontaneous Ca2+ transients increasing from 0.45 ± 0.05 Hz to between 0.75 ± 0.06 and 0.94 ± 0.09 Hz after electrical stimulation at 3 to 9 Hz (P < 0.001), and this was accompanied by a significant increase in the velocity of Ca2+ transients that manifested as waves. Moreover, in the presence of high extracellular Ca2+, the spontaneous Ca2+ transients occurred more synchronously in the initial few seconds following electrical stimulation. The ryanodine receptors, which are the source of spontaneous Ca2+ transients in pulmonary vein cardiomyocytes, were found to be arranged in a striated pattern in the cell interior, as well as along the periphery of cell. Furthermore, labelling the sarcolemma with di-4-ANEPPS showed that over 90% of pulmonary vein cardiomyocytes possessed T-tubules. These findings demonstrate that the frequency of spontaneous Ca2+ transients in the rat pulmonary vein are increased following higher rates of electrical stimulation and increasing the extracellular Ca2+ concentration

    Differential sensitivity of Ca2+ wave and Ca2+ spark events to ruthenium red in isolated permeabilised rabbit cardiomyocytes

    No full text
    Spontaneous Ca2+ waves in cardiac muscle cells are thought to arise from the sequential firing of local Ca2+ sparks via a fire-diffuse-fire mechanism. This study compares the ability of the ryanodine receptor (RyR) blocker ruthenium red (RuR) to inhibit these two types of Ca2+ release in permeabilised rabbit ventricular cardiomyocytes. Perfusing with 600 nM Ca2+ (50 μM EGTA) caused regular spontaneous Ca2+ waves that were imaged with the fluorescence from Fluo-5F using a laser-scanning confocal microscope. Addition of 4 μM RuR caused complete inhibition of Ca2+ waves in 50% of cardiomyocytes by 2 minutes and in 100% by 4 minutes. Separate experiments used 350μM EGTA (600 nM Ca2+) to limit Ca2+ diffusion but allow the underlying Ca2+ sparks to be imaged. The time course of RuR-induced inhibition did not match that of waves. After 2 minutes of RuR, none of the characteristics of the Ca2+ sparks were altered, after 4 minutes Ca2+ spark frequency was reduced ~40%; no sparks could be detected after 10 minutes. Measurements of Ca2+ within the SR lumen using Fluo-5N showed an increase in intra-SR Ca2+ during the initial 2-4 minutes of perfusion with RuR in both wave and spark conditions. Computational modelling suggests that the sensitivity of Ca2+ waves to RuR block depends on the number of RyRs per cluster. Therefore inhibition of Ca2+-waves without affecting Ca2+-sparks may be explained by block of small, non-spark producing clusters of RyRs that are important to the process of Ca2+ wave propagation
    corecore