131 research outputs found

    Optoelectronic Properties of Carbon-Bound Boron Difluoride Hydrazone Dimers

    Get PDF
    The creation of dimeric boron difluoride complexes of chelating N-donor ligands is a proven strategy for the enhancement of the optoelectronic properties of fluorescent dyes. We report dimers based on the boron difluoride hydrazone (BODIHY) framework, which offer unique and sometimes unexpected substituent-dependent absorption, emission, and electrochemical properties. BODIHY dimers have low-energy absorption bands (lmax = 421 to 479 nm, e = 17,200 to 39,900 M−1 cm−1) that are red-shifted relative to monomeric analogues. THF solutions of these dimers exhibit aggregation-induced emission upon addition of water, with emission enhancement factors ranging from 5 to 18. Thin films of BODIHY dimers are weakly emissive as a result of the inner-filter effect, attributed to intermolecular p-type interactions. BODIHY dimers are redox-active and display two one-electron oxidation and two one-electron reduction waves that strongly depend on the N-aryl substituents. These properties are rationalized using density-functional theory calculations and X-ray crystallography experiments

    Formazanate Complexes of Hypervalent Group‐14 Elements as Precursors to Electronically Stabilized Radicals

    Get PDF
    The stability of molecular radicals containing main‐group elements usually hinges on the presence of bulky substituents that shield the reactive radical center. We describe a family of group‐14 formazanate complexes whose chemical reduction allows access to radicals that are stabilized instead by geometric and electron‐delocalization effects, specifically by the square‐pyramidal geometry adopted by the group‐14 atom (Si, Ge, Sn) within the framework of the heteroatom‐rich formazanate ligands. The reduction potentials of the Si, Ge, and Sn complexes as determined by cyclic voltammetry become more negative in that order. Examination of the solid‐state structures of these complexes suggested that their electron‐accepting ability decreases with increasing group‐14 atom size because a larger central atom increases the nonplanarity of the ligand‐based conjugated π‐electron system of the complex. The experimental findings were supported by density‐functional calculations on the parent complexes and the corresponding radicals

    Oxoborane Formation Turns on Formazanate-Based Photoluminescence

    Get PDF
    The synthesis of compounds containing multiple bonds to boron has challenged main-group chemists for decades. Despite significant progress, the possibility that the formation of such bonds can turn on photoluminescence has received minimal attention. We report an oxoborane (B=O) complex that is electronically stabilized by a formazanate ligand in the absence of significant steric bulk and, unlike the common BX2 (X = F, Cl) formazanate adducts, exhibits intense photoluminescence. The latter property was rationalized through density-functional calculations which indicated that the B=O bond enhances photoluminescence by drastically reducing differences between the ligand\u27s geometries in the ground and excited states. The title oxoborane compound was synthesized from an air- and moisture-stable BCl2 formazanate complex and subsequently converted to a redox-active boroxine. Each of these species may also serve as a precursor to functional materials

    Aluminum Complexes of N2O23‒ Formazanate Ligands Supported by Phosphine Oxide Donors

    Get PDF
    The synthesis and characterization of a new family of phosphine-oxide-supported aluminum formazanate complexes (7a, 7b, 8a, 9a) are reported. X-ray diffraction studies revealed that the aluminum atoms in the complexes adopt an octahedral geometry in the solid state. The equatorial positions are occupied by an N2O23‒ formazanate ligand, and the axial positions are occupied by L-type phosphine oxide donors. UV-vis absorption spectroscopy revealed that the complexes were strongly absorbing (Δ ~ 30,000 M‒1 cm‒1) between 500 and 700 nm. The absorption maxima in this region were simulated using time-dependent density-functional theory. With the exception of 3-cyano substituted complex 7b, which showed maximum luminescence intensity in the presence of excess phosphine oxide, the title complexes are non-emissive in solution and the solid state. The electrochemical properties of the complexes were probed using cyclic voltammetry. Each complex underwent sequential one-electron oxidations in potential ranges of ‒0.12 to 0.29 V and 0.62 to 0.97 V, relative to the ferrocene/ferrocenium redox couple. Electrochemical reduction events were observed at potentials between ‒1.34 and ‒1.75 V. When combined with tri-n-propylamine as a coreactant, complex 7b acted as an electrochemiluminescence emitter with a maximum electrochemiluminescence intensity at a wavelength of 735 nm, red-shifted relative to the photoluminescence maximum of the same compound

    A strongly Lewis-acidic and fluorescent borenium cation supported by a tridentate formazanate ligand

    Get PDF
    Lewis acids are highly sought after for their applications in sensing, small-molecule activation, and catalysis. When combined with π-conjugated molecular frameworks, Lewis acids with unique optoelectronic properties can be realized. Here, we use a tridentate formazanate ligand to create a planar, redox-active, fluorescent, and strongly Lewis-acidic borenium cation. We also demonstrate that this compound can act as a colourimetric probe for reactivity

    Chemotactic and Inflammatory Responses in the Liver and Brain Are Associated with Pathogenesis of Rift Valley Fever Virus Infection in the Mouse

    Get PDF
    Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the initial hepatitis is neurologic in nature which is supported by observations of human disease and the BALB/c mouse model

    Process evaluation in the field: global learnings from seven implementation research hypertension projects in low-and middle-income countries

    Get PDF
    Background Process evaluation is increasingly recognized as an important component of effective implementation research and yet, there has been surprisingly little work to understand what constitutes best practice. Researchers use different methodologies describing causal pathways and understanding barriers and facilitators to implementation of interventions in diverse contexts and settings. We report on challenges and lessons learned from undertaking process evaluation of seven hypertension intervention trials funded through the Global Alliance of Chronic Diseases (GACD). Methods Preliminary data collected from the GACD hypertension teams in 2015 were used to inform a template for data collection. Case study themes included: (1) description of the intervention, (2) objectives of the process evaluation, (3) methods including theoretical basis, (4) main findings of the study and the process evaluation, (5) implications for the project, policy and research practice and (6) lessons for future process evaluations. The information was summarized and reported descriptively and narratively and key lessons were identified. Results The case studies were from low- and middle-income countries and Indigenous communities in Canada. They were implementation research projects with intervention arm. Six theoretical approaches were used but most comprised of mixed-methods approaches. Each of the process evaluations generated findings on whether interventions were implemented with fidelity, the extent of capacity building, contextual factors and the extent to which relationships between researchers and community impacted on intervention implementation. The most important learning was that although process evaluation is time consuming, it enhances understanding of factors affecting implementation of complex interventions. The research highlighted the need to initiate process evaluations early on in the project, to help guide design of the intervention; and the importance of effective communication between researchers responsible for trial implementation, process evaluation and outcome evaluation. Conclusion This research demonstrates the important role of process evaluation in understanding implementation process of complex interventions. This can help to highlight a broad range of system requirements such as new policies and capacity building to support implementation. Process evaluation is crucial in understanding contextual factors that may impact intervention implementation which is important in considering whether or not the intervention can be translated to other contexts
    • 

    corecore