1,626 research outputs found

    The 2nd order renormalization group flow for non-linear sigma models in 2 dimensions

    Full text link
    We show that for two dimensional manifolds M with negative Euler characteristic there exists subsets of the space of smooth Riemannian metrics which are invariant and either parabolic or backwards-parabolic for the 2nd order RG flow. We also show that solutions exists globally on these sets. Finally, we establish the existence of an eternal solution that has both a UV and IR limit, and passes through regions where the flow is parabolic and backwards-parabolic

    Dynamical heat channels

    Full text link
    We consider heat conduction in a 1D dynamical channel. The channel consists of a group of noninteracting particles, which move between two heat baths according to some dynamical process. We show that the essential thermodynamic properties of the heat channel can be evaluated from the diffusion properties of the underlying particles. Emphasis is put on the conduction under anomalous diffusion conditions. \\{\bf PACS number}: 05.40.+j, 05.45.ac, 05.60.cdComment: 4 figure

    No classical limit of quantum decay for broad states

    Full text link
    Though the classical treatment of spontaneous decay leads to an exponential decay law, it is well known that this is an approximation of the quantum mechanical result which is a non-exponential at very small and large times for narrow states. The non exponential nature at large times is however hard to establish from experiments. A method to recover the time evolution of unstable states from a parametrization of the amplitude fitted to data is presented. We apply the method to a realistic example of a very broad state, the sigma meson and reveal that an exponential decay is not a valid approximation at any time for this state. This example derived from experiment, shows the unique nature of broad resonances

    Smoluchowski-Kramers approximation in the case of variable friction

    Full text link
    We consider the small mass asymptotics (Smoluchowski-Kramers approximation) for the Langevin equation with a variable friction coefficient. The limit of the solution in the classical sense does not exist in this case. We study a modification of the Smoluchowski-Kramers approximation. Some applications of the Smoluchowski-Kramers approximation to problems with fast oscillating or discontinuous coefficients are considered.Comment: already publishe

    Chaos edges of zz-logistic maps: Connection between the relaxation and sensitivity entropic indices

    Full text link
    Chaos thresholds of the zz-logistic maps xt+1=1axtzx_{t+1}=1-a|x_t|^z (z>1;t=0,1,2,...)(z>1; t=0,1,2,...) are numerically analysed at accumulation points of cycles 2, 3 and 5. We verify that the nonextensive qq-generalization of a Pesin-like identity is preserved through averaging over the entire phase space. More precisely, we computationally verify limt<Sqsenav>(t)/t=limt(t)/tλqsenavav\lim_{t \to\infty}< S_{q_{sen}^{av}} >(t)/t= \lim_{t \to\infty}(t)/t \equiv \lambda_{q_{sen}^{av}}^{av}, where the entropy Sq(1ipiq)/(q1)S_{q} \equiv (1- \sum_i p_i^q)/ (q-1) (S1=ipilnpiS_1=-\sum_ip_i \ln p_i), the sensitivity to the initial conditions ξlimΔx(0)0Δx(t)/Δx(0)\xi \equiv \lim_{\Delta x(0) \to 0} \Delta x(t)/\Delta x(0), and lnqx(x1q1)/(1q)\ln_q x \equiv (x^{1-q}-1)/ (1-q) (ln1x=lnx\ln_1 x=\ln x). The entropic index qsenav0q_{sen}^{av}0 depend on both zz and the cycle. We also study the relaxation that occurs if we start with an ensemble of initial conditions homogeneously occupying the entire phase space. The associated Lebesgue measure asymptotically decreases as 1/t1/(qrel1)1/t^{1/(q_{rel}-1)} (qrel>1q_{rel}>1). These results led to (i) the first illustration of the connection (conjectured by one of us) between sensitivity and relaxation entropic indices, namely qrel1A(1qsenav)αq_{rel}-1 \simeq A (1-q_{sen}^{av})^\alpha, where the positive numbers (A,α)(A,\alpha) depend on the cycle; (ii) an unexpected and new scaling, namely qsenav(cyclen)=2.5qsenav(cycle2)+ϵq_{sen}^{av}(cycle n)=2.5 q_{sen}^{av}(cycle 2)+ \epsilon (ϵ=0.03\epsilon=-0.03 for n=3n=3, and ϵ=0.03\epsilon = 0.03 for n=5n=5).Comment: 5 pages, 5 figure

    A gyro-gauge independent minimal guiding-center reduction by Lie-transforming the velocity vector field

    No full text
    International audienceWe introduce a gyro-gauge independent formulation of a simplified guiding-center reduction, which removes the fast time-scale from particle dynamics by Lie-transforming the velocity vector field. This is close to Krylov-Bogoliubov method of averaging the equations of motion, although more geometric. At leading order, the Lie-transform consists in the generator of Larmor gyration, which can be explicitly inverted, while working with gauge-independent coordinates and operators, by using the physical gyro-angle as a (constrained) coordinate. This brings both the change of coordinates and the reduced dynamics of the minimal guiding-center reduction order by order in a Larmor radius expansion. The procedure is algorithmic and the reduction is systematically derived up to full second order, in a more straightforward way than when Lie-transforming the phase-space Lagrangian or averaging the equations of motion. The results write up some structures in the guiding-center expansion. Extensions and limitations of the method are considered

    On the Green function of linear evolution equations for a region with a boundary

    Full text link
    We derive a closed-form expression for the Green function of linear evolution equations with the Dirichlet boundary condition for an arbitrary region, based on the singular perturbation approach to boundary problems.Comment: 9 page

    Towards a feasible implementation of quantum neural networks using quantum dots

    Full text link
    We propose an implementation of quantum neural networks using an array of quantum dots with dipole-dipole interactions. We demonstrate that this implementation is both feasible and versatile by studying it within the framework of GaAs based quantum dot qubits coupled to a reservoir of acoustic phonons. Using numerically exact Feynman integral calculations, we have found that the quantum coherence in our neural networks survive for over a hundred ps even at liquid nitrogen temperatures (77 K), which is three orders of magnitude higher than current implementations which are based on SQUID-based systems operating at temperatures in the mK range.Comment: revtex, 5 pages, 2 eps figure

    GPU accelerated shake and rattle algorithms for systems with holonomic constraints

    Get PDF
    The dynamic of complex fluid can be described by including viscoelastic stress tensor into the equation of Non-Newtonian fluid. Different models are used to evaluate the stress tensor at various levels, with the multi-scale model being the most effective
    corecore