710 research outputs found

    Conservation of connectivity of model-space effective interactions under a class of similarity transformation

    Full text link
    Effective interaction operators usually act on a restricted model space and give the same energies (for Hamiltonian) and matrix elements (for transition operators etc.) as those of the original operators between the corresponding true eigenstates. Various types of effective operators are possible. Those well defined effective operators have been shown being related to each other by similarity transformation. Some of the effective operators have been shown to have connected-diagram expansions. It is shown in this paper that under a class of very general similarity transformations, the connectivity is conserved. The similarity transformation between hermitian and non-hermitian Rayleigh-Schr\"{o}dinger perturbative effective operators is one of such transformation and hence the connectivity can be deducted from each other.Comment: 12 preprint page

    Effect of the bound nucleon form factors on charged-current neutrino-nucleus scattering

    Full text link
    We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors of the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive 12^{12}C(νμ,μ−\nu_\mu,\mu^-)XX cross sections using a relativistic Fermi gas model with the calculated bound nucleon form factors. The effect of the bound nucleon form factors for this reaction is a reduction of ∼\sim8% for the total cross section, relative to that calculated with the free nucleon form factors.Comment: Latex, 11 pages, 3 figures, version to appear in Phys. Rev. C (Brief Report

    Conserving Gapless Mean-Field Theory for Bose-Einstein Condensates

    Full text link
    We formulate a conserving gapless mean-field theory for Bose-Einstein condensates on the basis of a Luttinger-Ward thermodynamic functional. It is applied to a weakly interacting uniform gas with density nn and s-wave scattering length aa to clarify its fundamental thermodynamic properties. It is found that the condensation here occurs as a first-order transition. The shift of the transition temperature ΔTc\Delta T_c from the ideal-gas result T0T_{0} is positive and given to the leading order by ΔTc=2.33an1/3T0\Delta T_c = 2.33a n^{1/3}T_0, in agreement with a couple of previous estimates. The theory is expected to form a new theoretical basis for trapped Bose-Einstein condensates at finite temperatures.Comment: Minor errors remove

    Superfluidity of bosons on a deformable lattice

    Full text link
    We study the superfluid properties of a system of interacting bosons on a lattice which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon model. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective soundwave-like mode with sound velocity vv, arising from gauge symmetry breaking: i) The sound velocity v0v_0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of phonon mediated interaction in the static limit. ii) the second order correction to the sound velocity is enhanced as compared to the one of bosons on a rigid lattice when the the boson-phonon interaction is switched on due to the retarded nature of phonon mediated interaction. The overall effect is that the sound velocity is practically unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system, driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detections of superfluid properties of the bosons. Our results are based on an extension of the Beliaev - Popov formalism for a weakly interacting Bose gas on a rigid lattice to that on a deformable lattice with which it interacts.Comment: 12 pages, 14 figures, to appear in Phys. Rev.

    Addressing the nitrogen problem in sugarcane production to reduce pollution of the Great Barrier Reef

    Get PDF
    The N pollution footprint of sugarcane cropping is large due to inefficiencies caused by mismatched N supply and crop N demand over sugarcane’s long N accumulation phase. The Great Barrier Reef lagoon receives excessive N loads that contribute to the rapidly declining reef health. Exceeding international average nitrous oxide emission rates several fold, sugarcane soils contribute significantly to Australia’s agricultural emissions. Nitrogen pollution reduction schemes over recent decades have mostly targeted reducing N fertiliser rates in line with expected yields and improving soil quality. Overall, these measures have not resulted in the desired N pollution reduction and further innovation is needed to address this problem. We present research that aims to aid agronomic innovation with (i) next-generation fertilisers that are based on repurposed nutrient-rich wastes and sorbent materials to better match N supply and crop demand and to improve soil function and carbon levels, (ii) understanding of soil N cycling and microbial processes, (iii) legume companion cropping as a source of biologically fixed N, and (iv) genetic improvement of sugarcane that more effectively captures and uses N. We conclude that evidence-based innovation has to support crop growers across climate and soil gradients in the 400,000 hectares of catchments of the Great Barrier Reef. This should include investment into new technologies to support ecologically-sound agriculture and a circular economy without waste and pollution

    Bose-Einstein Condensation in a Confined Geometry with and without a Vortex

    Full text link
    Various widely-used mean-field type theories for a dilute Bose gas are critically examined in the light of the recent discovery of Bose-Einstein condensation of atomic gases in a confined geometry. By numerically solving the mean-field equations within the framework of the Bogoliubov approximation both stationary non-uniform case and the vortex case under rotation in a cylindrically symmetric vessel are investigated. We obtain spatial structures of condensate, non-condensate, anomalous correlation. The low lying excitation spectra, the local density of states and the circulating current density in a vortex corresponding to various levels of mean-field theories are predicted.Comment: 16 pages, LaTeX with jpsj.sty, 13 eps figures. Figures improve

    Localization via Automorphisms of the CARs. Local gauge invariance

    Full text link
    The classical matter fields are sections of a vector bundle E with base manifold M. The space L^2(E) of square integrable matter fields w.r.t. a locally Lebesgue measure on M, has an important module action of C_b^\infty(M) on it. This module action defines restriction maps and encodes the local structure of the classical fields. For the quantum context, we show that this module action defines an automorphism group on the algebra A, of the canonical anticommutation relations on L^2(E), with which we can perform the analogous localization. That is, the net structure of the CAR, A, w.r.t. appropriate subsets of M can be obtained simply from the invariance algebras of appropriate subgroups. We also identify the quantum analogues of restriction maps. As a corollary, we prove a well-known "folk theorem," that the algebra A contains only trivial gauge invariant observables w.r.t. a local gauge group acting on E.Comment: 15 page

    Conserving Gapless Mean-Field Theory of a Multi-Component Bose-Einstein Condensate

    Full text link
    We develop a mean-field theory for Bose-Einstein condensation of spin-1 atoms with internal degrees of freedom. It is applicable to nonuniform systems at finite temperatures with a plausible feature of satisfying the Hugenholtz-Pines theorem and various conservation laws simultaneously. Using it, we clarify thermodynamic properties and the excitation spectra of a uniform gas. The condensate is confirmed to remain in the same internal state from T=0 up to TcT_{c} for both antiferromagnetic and ferromagnetic interactions. The excitation spectra of the antiferromagnetic (ferromagnetic) interaction are found to have only a single gapless mode, contrary to the prediction of the Bogoliubov theory where three (two) of them are gapless. We present a detailed discussion on those single-particle excitations in connection with the collective excitations.Comment: 8 pages, 7 figures Minor errors remove

    Energies and damping rates of elementary excitations in spin-1 Bose-Einstein condensed gases

    Full text link
    Finite temperature Green's function technique is used to calculate the energies and damping rates of elementary excitations of the homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature both in the density and spin channels. For this purpose the self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to fulfil the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to the gases of ^{23}Na and ^{87}Rb atoms.Comment: 26 pages, 21 figures. Added 2 new figures, detailed discussio

    NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes

    Get PDF
    Microbiologists conducting surveys of bacterial and archaeal diversity often require comparative alignments of thousands of 16S rRNA genes collected from a sample. The computational resources and bioinformatics expertise required to construct such an alignment has inhibited high-throughput analysis. It was hypothesized that an online tool could be developed to efficiently align thousands of 16S rRNA genes via the NAST (Nearest Alignment Space Termination) algorithm for creating multiple sequence alignments (MSA). The tool was implemented with a web-interface at . Each user-submitted sequence is compared with Greengenes' ‘Core Set’, comprising ∼10 000 aligned non-chimeric sequences representative of the currently recognized diversity among bacteria and archaea. User sequences are oriented and paired with their closest match in the Core Set to serve as a template for inserting gap characters. Non-16S data (sequence from vector or surrounding genomic regions) are conveniently removed in the returned alignment. From the resulting MSA, distance matrices can be calculated for diversity estimates and organisms can be classified by taxonomy. The ability to align and categorize large sequence sets using a simple interface has enabled researchers with various experience levels to obtain bacterial and archaeal community profiles
    • …
    corecore