research

Localization via Automorphisms of the CARs. Local gauge invariance

Abstract

The classical matter fields are sections of a vector bundle E with base manifold M. The space L^2(E) of square integrable matter fields w.r.t. a locally Lebesgue measure on M, has an important module action of C_b^\infty(M) on it. This module action defines restriction maps and encodes the local structure of the classical fields. For the quantum context, we show that this module action defines an automorphism group on the algebra A, of the canonical anticommutation relations on L^2(E), with which we can perform the analogous localization. That is, the net structure of the CAR, A, w.r.t. appropriate subsets of M can be obtained simply from the invariance algebras of appropriate subgroups. We also identify the quantum analogues of restriction maps. As a corollary, we prove a well-known "folk theorem," that the algebra A contains only trivial gauge invariant observables w.r.t. a local gauge group acting on E.Comment: 15 page

    Similar works

    Full text

    thumbnail-image

    Available Versions