31 research outputs found

    Similarity Solutions of the MHD Boundary Layer Flow Past a Constant Wedge within Porous Media

    Get PDF
    The two-dimensional magnetohydrodynamic flow of a viscous fluid over a constant wedge immersed in a porous medium is studied. The flow is induced by suction/injection and also by the mainstream flow that is assumed to vary in a power-law manner with coordinate distance along the boundary. The governing nonlinear boundary layer equations have been transformed into a third-order nonlinear Falkner-Skan equation through similarity transformations. This equation has been solved analytically for a wide range of parameters involved in the study. Various results for the dimensionless velocity profiles and skin frictions are discussed for the pressure gradient parameter, Hartmann number, permeability parameter, and suction/injection. A far-field asymptotic solution is also obtained which has revealed oscillatory velocity profiles when the flow has an adverse pressure gradient. The results show that, for the positive pressure gradient and mass transfer parameters, the thickness of the boundary layer becomes thin and the flow is directed entirely towards the wedge surface whereas for negative values the solutions have very different characters. Also it is found that MHD effects on the boundary layer are exactly the same as the porous medium in which both reduce the boundary layer thickness

    Numerical Solution for Thermal Elastohydrodynamic Lubrication of Line Contact with Couple Stress Fluid as Lubricant

    No full text
    In this paper, the detail analysis of the influence of thermal and non-Newtonian aspects of lubricant (couple stress fluid) on EHL line contact as a function of slide-roll ratio is presented. The novel low complexity FAS(Full approximation scheme), of  Multigrid scheme, with Jacobi dipole and Gauss Seidel relaxationis used for the solution of coupled equations viz.modified Reynolds equation, film thickness equation and energy equation satisfying  appropriate boundary conditions. The analysis reveals the combined influence of non-Newtonian, thermal and slide-roll ratio (of bearing movingwith different speeds) on pressure, film thickness and pressure spike covering wide range of physical parameters of interest. Results show that pressure spike is strongly influenced by thermal, slide-roll ratio and non-Newtonian character of lubricant with negligible effect on overall pressure distribution. Also, minimum film thickness is slightly altered and it increases with increase in couple stress parameter. These findings confirm the importance of non-Newtonian and thermal effects in the study of EHL
    corecore