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The two-dimensionalmagnetohydrodynamic flowof a viscous fluid over a constantwedge immersed in a porousmedium is studied.
The flow is induced by suction/injection and also by the mainstream flow that is assumed to vary in a power-law manner with
coordinate distance along the boundary. The governing nonlinear boundary layer equations have been transformed into a third-
order nonlinear Falkner-Skan equation through similarity transformations. This equation has been solved analytically for a wide
range of parameters involved in the study. Various results for the dimensionless velocity profiles and skin frictions are discussed for
the pressure gradient parameter, Hartmann number, permeability parameter, and suction/injection. A far-field asymptotic solution
is also obtained which has revealed oscillatory velocity profiles when the flow has an adverse pressure gradient. The results show
that, for the positive pressure gradient and mass transfer parameters, the thickness of the boundary layer becomes thin and the
flow is directed entirely towards the wedge surface whereas for negative values the solutions have very different characters. Also it
is found that MHD effects on the boundary layer are exactly the same as the porous medium in which both reduce the boundary
layer thickness.

1. Introduction

The research in MHD boundary layer flow has many impor-
tant engineering applications such as power generators,
the cooling of reactors, polymer industry, and spinning of
filaments. In industrial applications, when sheets or filaments
are made to cool, these get stretched. This cooling can
be controlled by applying the magnetic field; we would
then expect the final products with desired shapes. Because
of these significant applications, Pavlov [1] considered the
boundary layer flow of a conducting incompressible viscous
fluid due to deformation of an elastic surface in uniformly
applied magnetic field. Andersson [2] studied the MHD
boundary layer flow of a viscous fluid past a stretching
surface and showed that external magnetic field has the same
effect on the flow as the viscoelasticity. There are numerous

papers available in the literature on classical MHD boundary
layer flows (Watanabe and Pop [3]; Chaturvedi [4]) and
along with heat and mass transfer flows (Yih [5], Sobha
and Ramkrishna [6], Aly et al. [7], etc.). Joneidi et al. [8]
undertook the study of heat andmass transfer of viscous fluid
in an electrically conducting fluid and showed that MHD
decreases the boundary layer thickness. Hayata et al. [9]
have modeled the two-dimensional magnetohydrodynamic
boundary layer flow in a channel with porous walls, and they
considered Maxwell’s fluid in the porous space between the
channel walls and solved the governing ordinary differential
equations by homotopy analysis method. The effects of all
embedded flow parameters on the dimensionless velocity
components and temperature along with Nusselt number are
analyzed. Pantokratoras [10] has obtained the exact solutions
to the boundary layer flow along a vertical plate in the
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presence of the appliedmagnetic field and obtained analytical
expressions in terms of series form for Blasius-Sakiadis and
Sakiadis flows.

Xu et al. [11] have investigated the boundary layer flow
and heat transfer in an incompressible viscous electrically
conducting fluid that is caused by impulsive stretching of
the surface and used a well-developed homotopy analysis
method. They showed that the magnetic parameter reduces
the boundary layer thickness but enhances thermal boundary
layer thickness.

The study of fluid flows and mass transfer problems has
significant applications in a wide variety of geophysical and
engineering application such as flow of ground water energy
storage and chemical reactors (Nield and Bejan [12]; Ingham
et al. [13]). Some materials such as sintered bronze or metal
sheet perforated with numerous small holes are porous. If
these materials are used as the boundary of a region of fluid
flow and free stream velocity is maintained on the other side
away from the flow, the fluid will be sucked/injected through
the boundary. Then the appropriate boundary conditions
for the flow region is the normal component of the relative
velocity of fluid and surface at the boundary should be equal
to some value determined by the porosity that is represented
by the normal relative velocity 𝛼 (𝛼 > 0 for suction and 𝛼 < 0
is injection) (Batchelor [14]). Yao [15] studied the Falkner-
Skan flow over a wedge in a porous medium using the
approximate analytical solution given by homotopy analysis.
Guedda et al. [16] have explored numerically for the case of
MHDmixed boundary layer flow over a vertical flat plate in a
porousmedium and shown that there exist multiple solutions
for specific parameters.

It is noticed that the exact solutions in boundary layer
flow problems through similarity transformations are very
few. In fact the classical Falkner-Skan equation,

𝑓󸀠󸀠󸀠 (𝜂) + 𝑓 (𝜂) 𝑓󸀠󸀠 (𝜂) + 𝛽 (1 − 𝑓󸀠2 (𝜂)) = 0, (1)

with the boundary conditions

𝑓 (0) = 0,
𝑓󸀠 (0) = 0,
𝑓󸀠 (∞) = 1,

(2)

admits no analytical solution, because the nonlinearities
in the equation and appearance of the pressure gradient
parameter make the above system susceptible to obtain
an analytical solution. However, when one or both of the
initial conditions are nonzero and for 𝛽 = −1, the above
system yields an analytical solution in the form of error and
exponential functions (Sachdev et al. [17]). Exploring this
known analytical solution, they modified and rewrote it to
obtain an exact solution of the Falkner-Skan equation for all
possible values of 𝛽. Pioneered by this work, Kudenatti et al.
[18] obtained an analytical solution of theMHDFalkner-Skan
equation for various values of 𝛽 and the Hartmann number𝑀 and explored that their solutions are consistent with the
numerical solutions. At present, an analytical evidence for
two-dimensional boundary layer flow over a wedge with

an embedded permeability is not yet reported and that
requires a credible mechanism for its analysis. To facilitate
this, we follow the similar rational mathematical analysis
pioneered by Sachdev et al. [17]. Nevertheless, encouraged
by the insights obtained previously from the exact solution
of the Falkner-Skan equation, we investigate the nature of
the boundary layer flow and also briefly describe subsequent
far-field behavior asymptotically. Considering the influence
of favorable pressure gradient parameter, Volchkov et al. [19]
have shown that the dynamic boundary layers satisfy their
asymptotic conditions when skin-friction coefficient has no
dependence on Reynolds number as at asymptotic suction of
the boundary layer through the porous wall. They also found
the analogy between the suction through the porous wall and
the boundary layer of the accelerated flow; there is cross-flow
directed from the outer boundary to the wall.

More recently, Rashidi and Erfani [20] discussed the
similarity solution of MHD Hiemenz flow against a flat with
variable wall temperature in porousmedia.We have extended
the work of Rashidi and Erfani [20] for the Falkner-Skan flow
by introducing the non-Darcy velocity in the boundary layer
equations.

An analysis has been undertaken in order to investigate
the effect of permeability on the boundary layer flow of an
incompressible electrically conducting fluid over a stationary
wedge in the presence of transverse magnetic field. The
boundary layer Falkner-Skan flow is associated with four
physical parameters which exhibit different solution nature.
We aim to revisit some of these solutions and to find
velocity profiles and skin friction in each case and determine
corresponding flow structure.

The organization of the paper is as follows. In Section 2,
we describe the mathematical modeling of the problem
under discussion, and derive its governing equation, that is,
the Falkner-Skan equation along with appropriate boundary
conditions. We also give an exact solution of Falkner-Skan
equation for certain parameters. Section 3 devotes to derive
an exact solution of the Falkner-Skan equation for all physical
parameters. We modified the known exact solution for 𝛽 =−1 to give the solution for general values of 𝛽 and𝑀 and the
permeability parameter Ω and discuss the dynamics of the
velocity profiles. Section 4 contains an asymptotic solution in
the limit of large 𝜂 and obtains the solution of the linearized
differential equation in the form of confluent hypergeometric
functions, and we discuss the results obtained in this section.
The last section summarizes the important results of this
work.

2. Model

We consider the MHD two-dimensional viscous and incom-
pressible flow over a constant wedge through porous media.
The 𝑥-axis is measured along the direction of the wedge
surface, and𝑦-axis ismeasured normal to the flow and fluid is
occupying the half-space 𝑦 > 0. For a large Reynolds number,
the viscosity effects are confined to the wedge surface, and
this clearly divides into near field where the viscosity plays a
dominant role and far field where the zero-shear viscosity is
important. The constant wedge is entirely immersed inside



Mathematical Problems in Engineering 3

a porous matrix which is subject to applied magnetic field𝐵(𝑥) (applied normal to the flow). Let 𝑞⃗ = (𝑢, V) be the
velocity vector in which 𝑢 and V are velocity components in𝑥- and 𝑦-directions and this velocity field develops due to
the interaction of the electromagnetic field inside the porous
medium. Thus, the MHD for two-dimensional flow with
usual notations are

∇ ⋅ 𝑞⃗ = 0, (3)

1𝜖2 (𝑞⃗ ⋅ ∇) 𝑞⃗ = −1𝜌∇𝑝 + 𝜇𝑒𝜌 ∇2𝑞⃗ − 𝜇𝜌𝐾𝑞⃗ + 1𝜌 𝐽⃗ × 𝐵⃗, (4)

where 𝜌 is the fluid density, 𝜖 is the porosity, 𝑝 is the pressure,𝜇𝑒 is the effective viscosity, for simplicity we consider it to be
identical to the dynamic viscosity 𝜇, 𝐾 is the permeability of
the porous medium, and 𝐽⃗ × 𝐵⃗ (=𝜎(𝐸 + 𝑞⃗ × 𝐵) × 𝐵) is a body
force. This body force represents the coupling between the
magnetic field and the fluid motion which is called Lorentz
force.The induced magnetic field is assumed to be negligible.
This assumption is justified by the fact that the magnetic
Reynolds number is very small.This plays a vital role in some
engineering problems where the conductivity is not large in
the absence of an externally applied field. It has been taken
that 𝐸 = 0. Thus the Lorentz force is given by

𝐽⃗ × 𝐵⃗ = −𝜎𝐵2𝑞⃗. (5)

Since the magnetic drag is a body force on the moving fluid
and not on the porous medium, the right-hand side of (5)
must be multiplied by the factor 𝜖−1. Then from (4) and (5),
we obtain

1𝜖2 (𝑞⃗ ⋅ ∇) 𝑞⃗ = −1𝜌∇𝑝 + 𝜇𝑒𝜌 ∇2𝑞⃗ − 𝜇𝜌𝐾𝑞⃗ − 𝜎𝐵2 (𝑥)𝜌𝜖 𝑞⃗. (6)

Let 𝑈(𝑥) be the velocity of the mainstream flow along 𝑥-
direction outside the boundary layer. The key idea involved
in making the boundary layer approximation is that the
viscosity effects are dominant in the adjacent to the surface.
If 𝛿 is the thickness of the boundary layer, then 𝛿 ≪ 𝐿,
where 𝐿 is the characteristic horizontal length. This implies
on making an order of magnitude estimate of each term
with 𝛿 ≪ 𝐿. Hence V is much smaller than 𝑢. Also the
other basic approximation is |𝜕𝑢/𝜕𝑦| ≫ |𝜕𝑢/𝜕𝑥|. Further,
it is also assumed that |𝜕𝑝/𝜕𝑦| ≪ |𝜕𝑝/𝜕𝑥| in (6) meaning
that the pressure 𝑝 in the boundary layer is a function of𝑥 only (to the approximation). With 𝛿 ≪ 𝐿, the term𝜕2𝑢/𝜕𝑥2 can be neglected in comparison with 𝜕2𝑢/𝜕𝑦2. With

these assumptions we close the derivation and corresponding
momentum and continuity equations are given by

𝜕𝑢𝜕𝑥 + 𝜕V𝜕𝑦 = 0, (7)

1𝜖2 (𝑢𝜕𝑢𝜕𝑥 + V
𝜕𝑢𝜕𝑦) = −1𝜌 𝜕𝑝𝜕𝑥 + ]

𝜕2𝑢𝜕𝑦2 − ]𝐾𝑢
− 𝜎𝐵2 (𝑥)𝜌𝜖 𝑢,

(8)

𝜕𝑝𝜕𝑦 = 0, (9)

To determine the pressure distribution, the velocity at
the edge of the boundary layer is equal to the mainstream
flow 𝑈(𝑥) and by Bernoulli’s theorem, the pressure would be
constant in the inviscid flow influenced by the porous media
and applied magnetic field; that is,

𝑈 (𝑥)𝜖2 𝑑𝑈 (𝑥)𝑑𝑥 = −1𝜌 𝑑𝑝𝑑𝑥 − 𝜇𝜌𝐾𝑈 (𝑥) − 𝜎𝐵2𝜌𝜖 𝑈 (𝑥) . (10)

Plugging (10) in (8), we get theMHDboundary layer equation
as

1𝜖2 (𝑢𝜕𝑢𝜕𝑥 + V
𝜕𝑢𝜕𝑦) = 1𝜖2𝑈 (𝑥) 𝑑𝑈 (𝑥)𝑑𝑥 + ]

𝜕2𝑢𝜕𝑦2
− ]𝐾 (𝑢 − 𝑈 (𝑥))
− 𝜎𝐵2 (𝑥)𝜌𝜖 (𝑢 − 𝑈 (𝑥)) .

(11)

All terms on the right-hand side (from left to right) represent
the effects of the mainstream forcing, the viscous forces, the
porous medium, and the magnetic interaction on the bound-
ary layer flow. The mainstream velocity 𝑈(𝑥) is expected to
obey the power-law relation 𝑈(𝑥) = 𝑈∞𝑥𝑚, where 𝑈∞ is
constant and 𝑚 defines the strength of pressure gradient.
The variations of the 𝑚 will be discussed later. The relevant
boundary conditions for the above model are

at 𝑦 = 0: 𝑢 = 0,
V = 𝑉𝑤,

as 𝑦 󳨀→ ∞: 𝑢 󳨀→ 𝑈 (𝑥) .
(12)

In (12), the condition on 𝑢 on the surface signifies that the
wedge surface is at rest, and 𝑉𝑤 is the mass transpiration
parameter. The conditions on the velocity at infinity mean
that the velocity approaches the mainstream flow far-away
from thewedge surface.Thus, themain boundary layer effects
are restricted to the immediate neighborhood of the surface.
System (11) and (12) allows reducing both dependent and
independent variables to one each by the following similarity
transformations. This is further evidenced by the similar
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velocity profiles existing in the boundary layer for any 𝑥 in
the streamwise direction. Accordingly, we define

𝜓 = √2]𝑥𝑈 (𝑥) 𝜖21 + 𝑚 𝑓 (𝜂) ,
𝜂 = √ (1 + 𝑚)𝑈 (𝑥)2𝜖2]𝑥 𝑦,

(13)

where the stream-function 𝜓(𝑥, 𝑦) is defined as

(𝑢, V) = (𝜕𝜓𝜕𝑦 , −𝜕𝜓𝜕𝑥) ; (14)

from system (11) to (12), we get

𝑓󸀠󸀠󸀠 (𝜂) + 𝑓 (𝜂) 𝑓󸀠󸀠 (𝜂) + 𝛽 (1 − 𝑓󸀠2 (𝜂))
− (Ω +𝑀2) (𝑓󸀠 (𝜂) − 1) = 0, 󸀠 = 𝑑𝑑𝜂

(15)

with the boundary conditions

𝑓 (0) = 𝛼,
𝑓󸀠 (0) = 0,

𝑓󸀠 (+∞) = 1.
(16)

Here (15) is themodified Falkner-Skan equation that accounts
MHD and porous of the surface. Here 𝑓(𝜂) is the nondimen-
sional stream-function, and 𝜂 is a new similarity variable,𝛼 (=−(1/𝜖)√2𝑥/(𝑚 + 1)]𝑈(𝑥)𝑉𝑤) is the suction/injection
parameter, 𝛼 > 0 represents suction, and 𝛼 < 0 is the injec-
tion, whereas𝛼 = 0 is impermeable of thewedge surface. Also𝛽 (=2𝑚/(1 + 𝑚)) is nonlinear pressure gradient parameter,𝛽 > 0 is the favorable, and 𝛽 < 0 is the adverse pressure
gradient, whereas 𝛽 = 0 is the two-dimensional Blasius flow
over a flat plate. Parameter 𝑀 (=𝐵20√2𝜎𝜖/𝜌𝑈∞(𝑚 + 1)) is
the magnetic (Hartmann number) parameter which is the
ratio of electromagnetic force to the viscous force and Ω
(=2𝜖2(𝑈∞/])(𝑚−2)/𝐾(𝑚+1)Re(𝑚−1)𝑥 ) is permeability, and Re𝑥
(=𝑈∞𝑥/]) is the local Reynolds number. For 𝛽 = 0 = 𝑀 = Ω,
the above problem reduces to the Blasius flow that describes
a two-dimensional flow over a flat plate with mass transfer
and is studied by several investigators with different cases and
hence no comment is needed. For𝑀 = 𝛼 = Ω = 0, the above
system reduces to the classical Falkner-Skan system.

Twice integration of (15) with 𝛽 = −1 and Ω = 0 = 𝑀
gives the Riccati type equation:

2𝑓󸀠 (𝜂) + 𝑓2 (𝜂) = 𝜂2 + 2Δ𝜂 + 𝛼2, (17)

where Δ = 𝑓󸀠󸀠(0). The solution of (17) is given by

𝑓 (𝜂) = 𝜂 + Δ + (𝛼 − Δ) 𝑒−(𝜂2/2+Δ𝜂)1 + (𝛼 − Δ) (1/2) 𝑒Δ2/2√𝜋/2 (erf ((𝜂 + Δ) /√2) − erf (Δ/√2)) , (18)

provided

𝑓󸀠󸀠 (0) = Δ = ±√−2 + 𝛼2. (19)

We note from (19) that the Falkner-Skan equation (15) admits
the dual solutions for 𝛼 > √2 and no solution when 𝛼 < √2.
For 𝛼 = √2 there exist a trivial solution for the Falkner-
Skan equation and is given by 𝑓(𝜂) = 𝜂 which demarcates
the boundary layer structure. In any case, solutions of the
Falkner-Skan equation have a boundary layer character; in
fact these are the solutions of the Navier-Stokes equations in
simplified form.The above solution can be taken byKudenatti
and Awati [21], but for the completeness of the paper it is
given again. We now device the method for obtaining an
exact solution of the equation bymodifying the above known
solution for values of 𝛽, Ω, and 𝑀 and recover the known
closed form solution as a special case.

3. Exact Solution

The exact solution (18) can be modified and rewritten as

𝑓 (𝜂) = 𝜂 + Δ + (𝛼 − Δ)𝐺 (𝜂) , (20)

where 𝐺(𝜂) is the new stream-function. The above form
exhibits a very interesting solution nature that has not been
reported so far. The above form makes it possible to give an
exact solution of the problem for all values of 𝛽, 𝑀, and Ω
including the case 𝛽 = −1. Substituting the modified form
(20) into the Falkner-Skan system (15) and (16), we get

𝐺2𝐺󸀠󸀠󸀠 + 𝐺󸀠2 ((−2 + 𝛽) (𝛼 − Δ) + 6𝐺󸀠)
− 𝐺 (2 (Δ + 𝜂)𝐺󸀠2) + (−𝛼 + Δ)𝐺󸀠󸀠 + 6𝐺󸀠𝐺󸀠󸀠
+ 𝐺2 (− (𝑀2 + 2𝛽 + Ω)𝐺󸀠 + (Δ + 𝜂)𝐺󸀠󸀠) = 0,

(21)

with the boundary conditions

𝐺 (0) = 1,
𝐺󸀠 (0) = 1𝛼 − Δ,

𝐺󸀠 (+∞) = 0,
(22)
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where 𝐺 = 𝐺(𝜂). For 𝛽 = −1 andΩ = 0 = 𝑀, solution of (21)
is given by

𝐺 (𝜂) = 𝑒(𝜂2/2+Δ𝜂) (1
+ (𝛼 − Δ) 𝑒Δ2/2√𝜋8 (erf (𝜂 + Δ√2 ) − erf ( Δ√2))) .

(23)

The error and exponential functions in (23) are entire func-
tions that can be expanded using Taylor series about 𝜂 = 0
and have an infinite radius of convergence. Thus, the series
representation of the solution (23) becomes the main clue
for further similar analysis for general values of 𝛽, 𝑀, andΩ. Expecting the similar series representation, it is natural to
express the stream-function 𝐺(𝜂) as

𝐺 (𝜂) = ∞∑
𝑛=0

𝑎𝑛𝜂𝑛 (24)

for general 𝛽, 𝑀, and Ω. For obtaining the coefficients 𝑎𝑛,
substituting (24) with 𝑎0 = 1 and 𝑎1 = 1/(𝛼 − Δ) in hand
into (21) and equating the coefficients of various powers of 𝜂
to zero, we get

𝑎3 = ( 16 (𝛼 − Δ)3) (−6 + Δ2 (𝑀2 + 𝛽 + Ω) (1 +𝑀2
+ 𝛽 + Ω) (𝛼2 − 2𝛼Δ) + 𝛼2 − 2 (𝛼 − Δ)2 (−6 + 𝛼2
− 𝛼Δ) 𝑎2) ,

𝑎4 = 112 ((Δ − 𝛼𝜆) 𝑎31 + 𝑎21 (1 +𝑀2 + 2𝛽 + Ω − 12𝑎2)
+ 𝑎2 (−1 +𝑀2 + 2𝛽 + Ω + 12𝑎2) − 3𝛼𝑎3
+ 𝑎1 (((−1 + 2𝛽) Δ + 𝛼 (3 + 𝜆 − 2𝛽 (1 + 𝜆))) 𝑎2
+ 12𝑎3)) ,

(25)

and in general, the recurrence relation is

𝑎𝑛+3 = −1(𝑛 + 1) (𝑛 + 2) (𝑛 + 3) (
𝑛−1∑
𝑗=0

𝑛−𝑗∑
𝑘=0

(𝑗 + 1) (𝑗 + 2) (𝑗 + 3) 𝑎𝑘𝑎𝑛−𝑗−𝑘𝑎𝑗+3
+ 𝑛∑
𝑗=0

(− (Δ − 𝛼) (𝑗 + 1) ((𝑗 + 2) 𝑎𝑛−𝑗𝑎𝑗+2 − (2 − 𝛽) (𝑛 − 𝑗 + 1) 𝑎𝑗+1𝑎𝑛−𝑗+1)

− 𝑛∑
𝑗=0

𝑗∑
𝑘=0

(𝑘 + 1) (𝑗 − 𝑘 + 1) (2Δ𝑎𝑛−𝑗 − 6 (𝑛 − 𝑗 + 1) 𝑎𝑛−𝑗+1) 𝑎𝑘+1𝑎𝑗−𝑘+1
+ 𝑛∑
𝑗=0

𝑛−𝑗∑
𝑘=0

((𝑗 + 1) (𝑎𝑗+1 (𝑗 − 2𝛽 − 𝐽2 + Ω) + Δ (𝑗 + 2) 𝑎𝑗+2) 𝑎𝑘𝑎𝑛−𝑗−𝑘
− (𝑘 + 1) (6 (𝑗 + 1) (𝑗 + 2) 𝑎𝑗+2 + 2 (𝑛 − 𝑗 − 𝑘) 𝑎𝑗) 𝑎𝑘+1𝑎𝑛−𝑗−𝑘)))

(26)

for 𝑛 = 1, 2, 3, . . .. It is observed that all the coefficients 𝑎𝑛
have been obtained in terms of unknown parameter 𝑎2 and
all physical parameters 𝛽, 𝛼,𝑀, andΩ. And also note that the
definition of Δ (=√𝛼2 − 2) that was obtained in (19) for 𝛽 =−1 and 𝑀 = 0 = Ω remains the same even for other values
of these parameters.The free parameter 𝑎2 remains unknown
because of an end condition in (22); this unknown 𝑎2 must
be found in such a way that the derivative condition at far
distance is satisfied (i.e.,𝑓󸀠(∞) = 1). Following (20) and (24),
the unknown 𝑎2 is related to 𝑓󸀠󸀠(0) through

𝑎2 = −12 (𝛼 − Δ) (𝑓󸀠󸀠 (0) − 2(𝛼 − Δ)) , (27)

where 𝑓󸀠󸀠(0) is also unknown. To determine 𝑎2 or 𝑓󸀠󸀠(0),
integrating the MHD Falkner-Skan equation (15) across the

boundary thickness using the boundary conditions (16), we
get

∫∞
0

(𝑓󸀠 (𝜂) − 𝑓󸀠2 (𝜂)) 𝑑𝜂 + 𝛽∫∞
0

(1 − 𝑓󸀠2 (𝜂)) 𝑑𝜂
−𝑀1 ∫∞

0
(𝑓󸀠 (𝜂) − 1) 𝑑𝜂 = 𝑓󸀠󸀠 (0) − 𝛼,

(28)

where𝑀1 = (𝑀2+Ω). Looking at (27) and (28), it is sufficient
to determine either 𝑎2 or 𝑓󸀠󸀠(0). Since 𝑓󸀠󸀠(0) appears on both
sides of (28), it should be found iteratively using suitable
initial approximation for it.The initial approximation is taken
from the known exact solution (18) for other values of 𝛽,𝑀,
and Ω. Convergent 𝑓󸀠󸀠(0) is obtained when the derivative
condition at far distance is satisfied, that is, 𝑓󸀠(𝜂) → 1 as 𝜂 →∞ (Kudenatti et al. [18]). The values for 𝑓󸀠󸀠(0) which defines
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Table 1: Comparison of the wall-shear stress value 𝑓󸀠󸀠(0) obtained by solution (29) with numerical solution of the problem.

𝑀 = 1
𝛼 𝛽 Ω = 0.1 Ω = 0.5 Ω = 1.0

Exact solution Numerical solution Exact solution Numerical solution Exact solution Numerical solution

−2.5 0.5 0.55406 0.55406 0.66494 0.66503 0.79464 0.79464
1.5 0.86272 0.86327 0.96160 0.95955 1.07365 1.07367
2.5 1.13996 1.13996 1.22414 1.22549 1.32740 1.32796

−1.5 0.5 0.77682 0.77560 0.92210 0.92251 1.05306 1.05305
1.5 1.14703 1.14704 1.25278 1.25256 1.38488 1.37664
2.5 1.46059 1.46067 1.55160 1.55163 1.66086 1.66012

1.5
0.5 2.38869 2.38763 2.50242 2.50222 2.63615 2.63635
1.5 2.76013 2.76233 2.85672 2.85724 2.97045 2.97048
2.5 3.07548 3.07696 3.14291 3.15978 3.26147 3.25967

2.5
0.5 3.18651 3.18776 3.28564 3.28547 3.50062 3.50181
1.5 3.51843 3.51893 3.60425 3.60325 3.70529 3.70484
2.5 3.80649 3.80645 3.87612 3.88176 3.97309 3.97313
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Figure 1: Variation of velocity profiles 𝑓󸀠(𝜂) with 𝜂 for different values of 𝛽 > 0 for fixedΩ,𝑀, and 𝛼.

the skin-friction coefficient thus obtained are consistent with
direct numerical solution of the problem. Therefore, we have
obtained an exact solution of the Falkner-Skan equation for
all the values of 𝛽,𝑀, andΩ in the form

𝑓 (𝜂) = 𝜂 + Δ + (𝛼 − Δ)𝐺 (𝜂) , (29)

where the convergent power series 𝐺(𝜂) is given by (24).
To assess the efficiency of the present method, we compare
the values of 𝑓󸀠󸀠(0) with that of direct numerical solution
of the problem which are given in Table 1, and graphs
representing the velocity profiles are given in Figures 1–3. It
is observed from table that results from the above method
compare well with the numerical solutions for all the values
of parameters used in the analysis. Furthermore, for the
increasing values for the case of injection (𝛼 < 0) and
suction (𝛼 > 0), the skin-friction coefficient increases. Also
as the permeability parameterΩ increases, it again increases.

Therefore, the permeability Ω has a pronounced effect for a
given 𝛼 and pressure gradient 𝛽 in the presence of magnetic
field. Thus with convergent 𝑓󸀠󸀠(0) in hand, we use solution
(29) to plot velocity profiles (first derivative of 𝑓(𝜂)). Again,
Figure 1(a) shows the variation of velocity profiles with 𝜂
for different values of 𝛽 when other parameters are held
constant. These velocity curves are obtained from the exact
solution (29). It is observed that for increasing pressure
gradient 𝛽 the thickness of the momentum boundary layer
decreases. This is also evident from Figure 1(b) wherein we
plot the same graph for slightly bigger values of other constant
parameters and found that the velocity curves show the
typical behavior, making the boundary layer thickness still
thinner. Furthermore, it is evident and well established that
the effect of magnetic (Hartman) number is to decrease the
boundary layer thickness which is not discussed in detail
here. As discussed previously, in Figure 2(a) we investigate
the influence of injection parameter (𝛼 < 0) when other
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Figure 2: Variation of velocity profiles 𝑓󸀠(𝜂) with 𝜂 for different values of 𝛼 for fixedΩ,𝑀, and 𝛽.
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Figure 3: Variation of velocity profiles 𝑓󸀠(𝜂) with 𝜂 for different values of permeability parameter Ω for a fixed 𝛼,𝑀, and 𝛽.

parameters are held constant and found that themass transfer
effectively decreases the boundary layer thickness. Again
from Figure 2(b) it is observed that suction parameter (𝛼 >0) further reduces boundary layer thickness which is more
prominent wherein the effect of permeability is also taken
into account (Ω = 2). These typical results have been
reciprocated in Figure 3(a) for injection and in Figure 3(b)
for suction for different values of permeability parameterΩ. Thus the effect of permeability is to decrease boundary
layer thickness. As strength of the permeability increases, the
boundary layer thickness again reduces. As it increases, the
velocity profiles get closer to the thin boundary layer region,
all velocity curves are confined within the thin region. Thus,
the suction and permeability of the medium together have a
pronounced influence on the velocity profiles.

We have also calculated the two-dimensional boundary
layer displacement thickness from our exact solution (29) as

𝛿1 = √ (𝑚 + 1)𝑈 (𝑥)2]𝜖2𝑥 𝛿∗ = ∫∞
0

(1 − 𝑓󸀠 (𝜂)) 𝑑𝜂. (30)

Figures 4(a) and 4(b) display the two-dimensional displace-
ment thickness 𝛿1 over a range of values of Ω for different
values of magnetic number 𝑀 for fixed 𝛼 and 𝛽. It is
observed that displacement thickness increases unboundedly
for increasing permeability as well as applied magnetic field.

4. Far-Field Behavior

We investigate the existence of solutions for all flow parame-
ters by examining the asymptotics as 𝜂 → ∞. The derivative
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Figure 4: Variation of displacement thickness 𝛿1 withΩ for different values of𝑀 for a fixed 𝛼 and 𝛽.

boundary condition at edge of the boundary layer suggests
analyzing the local behavior of the solutions; that is, |𝑓󸀠(𝜂) −1| ≪ 1 as 𝜂 → ∞. This implies to define

𝑓 (𝜂) ∼ 𝛼 + 𝜂 + 𝐸 (𝜂) , (31)

where 𝐸(𝜂) and all its derivatives are assumed to be small.
Substituting (31) with 𝑓󸀠(𝜂) = 1 + 𝐸󸀠(𝜂), 𝑓󸀠󸀠(𝜂) = 𝐸󸀠󸀠(𝜂), and𝑓󸀠󸀠󸀠(𝜂) = 𝐸󸀠󸀠󸀠(𝜂) into system (15) and (16) and linearizing the
resulting ordinary differential equation, we get

𝐸󸀠󸀠󸀠 (𝜂) + (𝛼 + 𝜂) 𝐸󸀠󸀠 (𝜂) − (2𝛽 +𝑀2 + Ω)𝐸󸀠 (𝜂)
= 0, (32)

and boundary conditions take the form

𝐸 (0) = 0,
𝐸󸀠 (0) = −1,

𝐸󸀠 (+∞) = 0.
(33)

Solution of (32) subjected to the conditions (33) is given by

𝐸󸀠 (𝜂) = 𝐶22 1𝐹1(−𝐵𝑇2 , 12 , −(𝜂 + 𝛼)
2

2 )
− 𝐶11 1𝑈1(−𝐵𝑇2 , 12 , −(𝜂 + 𝛼)

2

2 ) ,
(34)

where

𝐶11
= 1
1𝑈1 (−𝐵𝑇/2, 1/2, −𝛼2/2) − 𝐶 1𝐹1 (−𝐵𝑇/2, 1/2, −𝛼2/2) ,

𝐶 = Γ (1 − 𝐵𝑇/2)
Γ (1/2) ,

𝐵𝑇 = 2𝛽 + Ω +𝑀2,
𝐶22 = 𝐶𝐶11,

(35)

where Γ is the Gamma function, ( 1𝐹1, 1U1)(⋅, ⋅, 𝜂) are con-
fluent hypergeometric functions, and 𝐶11 and 𝐶22 are known
constants obtained from the boundary conditions (33). The
asymptotic dependence of ( 1𝐹1, 1U1)(⋅, ⋅, 𝜂) on the param-
eters as 𝜂 → ∞ will be discussed later. The values for
skin friction 𝑓󸀠󸀠(0) that are obtained by system (31) and (34)
are compared with the numerical solution of the Falkner-
Skan equation for various values of the physical parameters
and are given in Table 2. It is observed that results agree
well qualitatively with the numerical solution. Again as dis-
cussed previously, for increasing values of 𝛼 the skin friction
obtained by the asymptotic solution also increases, and so is
for permeability parameterΩ.Thus, Table 2 resembles closely
with Table 1 though both the solutions are obtained using
different methods. We plot some of the solutions obtained by
the asymptotic solution in Figure 5 for several values of the
porous parameter Ω for an adverse pressure gradient 𝛽 (<0).
These results reveal very interesting solution structures which
are greatly distinct from 𝛽 > 0 velocity profiles (Figure 1). All
velocity curves for permeability parameter Ω oscillate finite
number of times and eventually satisfy the end condition.
Because these solutions exhibit oscillatory behavior, these
have both overshoot (𝑓󸀠(𝜂) > 1) and undershoot (𝑓󸀠(𝜂) <0) for some 𝜂. The asymptotic solution of the Falkner-Skan
equation in the limit of large 𝜂 clearly indicates that there is a
reverse flow in the boundary layer formost of the cases.Thus,
for all values of porous parameter, the boundary layer flow
can be divided into reverse flow and forward flow, and for a
specificΩ, it experiences both of these flows in the boundary
layer, but finally for large distance away from the surface, it is
only forward flow and satisfies the outer boundary condition.
This trend is observed for all values ofΩ and is true for other
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Table 2: Comparison of the wall-shear stress value 𝑓󸀠󸀠(0) obtained by the asymptotic solution (31) with numerical solution of the problem.

𝑀 = 2
𝛼 𝛽 Ω = 0.3 Ω = 1.5 Ω = 100

Asymptotic solution Numerical solution Asymptotic solution Numerical solution Asymptotic solution Numerical solution

−1.5 1.0 1.94067 1.74393 2.01452 1.82370 9.59541 9.54691
2.5 2.45269 2.10429 2.51481 2.17436 9.73942 9.64240
3.0 2.60582 2.21529 2.66513 2.28281 9.78698 9.67404

−1.0 1.0 2.14065 1.94035 2.21564 2.02153 9.83087 9.78232
2.5 2.65963 2.31217 2.72247 2.38303 9.97508 9.87833
3.0 2.81449 2.42609 2.87443 2.49421 10.0227 9.91015

1.0
1.0 3.17575 2.98078 3.24889 3.05951 10.8331 10.78467
2.5 3.68438 3.36234 3.74628 3.43084 10.9767 10.88218
3.0 3.83702 3.47842 3.89618 3.54436 11.0258 10.91448
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Figure 5: Variation of velocity profiles 𝑓󸀠(𝜂) that are obtained by asymptotic solution with 𝜂 for several values of permeability parameter Ω
for a fixed 𝛼,𝑀, and 𝛽.

values of pressure gradient 𝛽; see Figures 5(a) and 5(b).These
branches of solutions do exist only for the negative values of
pressure gradient parameters.

5. Discussion and Conclusion

The similarity solutions of the MHD Falkner-Skan equation
are obtained for all physical parameters in terms of a conver-
gent series form. This equation describes the MHD flow of
a viscous fluid over a wedge immersed in a porous medium
in which the wedge has mass transpiration. The solutions
mainly encompass the difference between both positive and
negative 𝛽 and 𝛼. Note also that the effect of porous matrix
is to give friction to the flow and the magnetic field releases
energy to the system exactly in the same spirit. The flow
is governed by the nonlinear differential equation of order
three and is solved by different approaches (Sections 2 and 3
and of course numerically). The validity and efficiency of the
solutionmethod are tested for various parametric values of 𝛽,𝑀,Ω, and𝛼 and comparedwith the direct numerical solution
of the MHD Falkner-Skan equation. We also investigated the

nature of the distribution of velocity in the boundary layer
region at which the effects of permeability, magnetic number,
and mass transfer are taken into account. Numerical values
for these parameters are taken which have been extensively
used in the previous theoretical studies. In particular, we have
taken the range of values for which the solutions are predicted
and boundary layer flows are realized. Further, the direct
numerical solutions of the MHD Falkner-Skan equation are
obtained via finite difference based Keller-box method. This
is a standard method for solving nonlinear boundary value
problem on a closed interval, in which the Falkner-Skan
equation is converted into an equivalent system of first order
equations.Theouter boundary condition is taken at very large
value of 𝜂, that is, 𝜂max ≫ 1. The standard central difference
schemes are used for the first order equations, and resulting
nonlinear algebraic equations are linearized and solved. Our
Keller-box code adapts a variable discretization step size to
ensure the desired accuracy in a double precision which was
set to 10−10 in all our computations. This is because a precise
value of 𝑓󸀠󸀠(0) would be required to compare solution with
an analytical ones. On the other hand, to enlarge the radius
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of convergence of the truncated power series𝐺(𝜂) in (24), the
Padé approximantswhich comprise the ratio of two unknown
power series have been used to sum the series𝐺(𝜂). Following
Bender and Orszag [22], all the coefficients in the Padé
approximants are uniquely determined. All the boundary
layer profiles have been plotted using solution (29) through
(24).Thus, all the solutions (namely, velocity profiles and skin
friction) obtained analytically compare well with numerical
solution of the problem for all parameters investigated.

Furthermore, following Abramowitz and Stegun [23]
asymptotic behavior of (34) for large 𝜂 can be approximated
at leading order as

𝐸󸀠 (𝜂) ∼ 𝐶22( 𝑒±𝑖𝜋(−𝐵𝑇/2)Γ (1 + 𝐵𝑇) /2𝑍𝐵𝑇/2 + 𝑒−𝑍𝑍−(1+𝐵𝑇)/2)
− 𝐶11𝑍𝐵𝑇/2 + 𝑂 (|𝑍|−𝑅) ,

(36)

where𝐶11 and𝐶22 are constants and𝑍 = (𝜂+𝛼)2/2. Equation
(36) can be rewritten as

𝐸󸀠 (𝜂) ∼ 𝐴11𝑍𝐵𝑇/2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼

+ 𝐵11𝑒−𝑍𝑍−(1+𝐵𝑇)/2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼𝐼

, (37)

where 𝐴11 and 𝐵11 are taken appropriately from (36).
Depending on the numerical values of flowparameters (𝛽,𝑀,
andΩ), the following analytical conclusions can be made:

(1) If 𝐵𝑇 = 0, 𝐼 becomes constant, while 𝐼𝐼 decays
asymptotically to zero.

(2) If 𝐵𝑇 > 0, 𝐼 diverges algebraically and 𝐼𝐼 con-
verges exponentially to zero; therefore both solutions𝐼 and 𝐼𝐼 together lead to convergent solutions. So
these velocity profiles satisfy both boundaries but are
entirely different in the intermediate values of 𝜂.

(3) If 𝐵𝑇 < 0, both 𝐼 and 𝐼𝐼 converge to zero in fact
very slowly, and we found that existence of velocity
profiles in the regime of parameters. In this case,
the combination of parameters exhibits a very special
solution. Thus, velocity profiles experience oscilla-
tory behavior confirming the reverse flow, which are
shown in Figures 5(a) and 5(b).

The analytical and asymptotic simulations provide evidence
that the boundary layer profiles do exist for all physical
parameters. The rigorous mathematical investigation of all
possible regimes of the flow parameters would require many
more simulations of the boundary layer flow and in fact
a proper simulation. The above self-similar results may be
used to extend the present analysis by including the unsteady
boundary layer flow situation, which is the interest of the
futurework. Itmay be anticipate that a new family of unsteady
boundary layer profiles is available, and a detailed investi-
gation into these solutions about overshoot and oscillatory
behavior should provide a rich subject for further work.
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