1,109 research outputs found

    Processor-in-the-loop architecture design and experimental validation for an autonomous racing vehicle

    Get PDF
    Self-driving vehicles have experienced an increase in research interest in the last decades. Nevertheless, fully autonomous vehicles are still far from being a common means of transport. This paper presents the design and experimental validation of a processor-in-the-loop (PIL) architecture for an autonomous sports car. The considered vehicle is an all-wheel drive full-electric single-seater prototype. The retained PIL architecture includes all the modules required for autonomous driving at system level: environment perception, trajectory planning, and control. Specifically, the perception pipeline exploits obstacle detection algorithms based on Artificial Intelligence (AI), and the trajectory planning is based on a modified Rapidly-exploring Random Tree (RRT) algorithm based on Dubins curves, while the vehicle is controlled via a Model Predictive Control (MPC) strategy. The considered PIL layout is implemented firstly using a low-cost card-sized computer for fast code verification purposes. Furthermore, the proposed PIL architecture is compared in terms of performance to an alternative PIL using high-performance real-time target computing machine. Both PIL architectures exploit User Datagram Protocol (UDP) protocol to properly communicate with a personal computer. The latter PIL architecture is validated in real-time using experimental data. Moreover, they are also validated with respect to the general autonomous pipeline that runs in parallel on the personal computer during numerical simulation

    Criteria for the Evaluation of Italian Scientific Institutes for Research, Hospitalization and Healthcare (IRCCS): Comparison with European Standards and Certification Models

    Get PDF
    The definition of the title 'Istituto di Ricovero e Cura a Carattere Scientifico' (IRCCS) and how this title is given by the Italian Ministry of Health is presented. Specifically, the first assessment of a commission concerning the essential information for the accreditation process is introduced. Moreover, the two years review process that aims to collect last updated information of the IRCCS, to identify level of excellence and critical aspects, is also explained. The present Italian forms and international manuals like Joint Commission, OECI and HCERES were schematized using UML diagrams. The current IRCCS accreditation forms are presented with the suggested updates organized in some levels of structuring. We compared the Italian forms with the manuals required to obtain international certifications (Joint Commission and OECI) and we analyzed the criteria for the evaluation of research units in France (the HCERES standards). Although it is a preliminary study, the use of UML diagrams allows to schematize a new accreditation model, in line with European guidelines and the most important international certifications

    Coupled trace element and Sr-Nd-(Pb) isotopes in olivine-hosted melt inclusions from the Mariana arc

    Get PDF
    The Mariana arc forms part of the 2500 km Izu–Bonin–Mariana arc system caused by westward subduction of the Pacific Plate beneath the Philippine Sea Plate over the last ~45 Myr. The magmatism produced in this comparatively simple arc setting records a moderate flux of fluids and sediments from the downgoing plate, however, the low MgO (<6 wt.%) of the lavas imply that magma mixing, crystal fractionation and crustal assimilation mask the primitive melt compositions. Olivine-hosted melt inclusions (MIs), in contrast, provide access to melt trapped deep in the magmatic plumbing system allowing more precise determination of the nature and quantity of recycled components. Here we analyse coupled trace element and Sr-Nd(-Pb) isotope compositions of olivine-hosted MIs in five samples from four islands within the Central Island province: Agrigan (AGR2, AGR6), Pagan (PAG3), Guguan (GUG6) and Sarigan (SAG1). Bulk rock MgO contents range from 4 to 5.7 wt.% [1]. We specifically target melt inclusions in olivine phenocrysts with the highest fortsterite content (Fo = Mg/(Mg+Fe)*100): AGR: 80-86; PAG: 76-81; GUG: 76-88; SAG: 84-88 mol%. Trace element contents and ratios of the selected MIs record marked differences between islands and show larger variability compared to published bulk rock and MI compositions [2]. Ba/La and Th/Nb or La/Sm ratios – indicators of slab fluids versus sediment melts, respectively – confirm that Guguan inclusions are dominated by a fluid component whereas Agrigan and Sarigan reflect a larger sediment contribution. Pagan inclusions show intermediate compositions and a restricted range indicating the influence of both fluids and sediments. Sr-Nd-(Pb) isotope compositions of individual and pooled melt inclusions will be determined by wet chemistry and TIMS techniques using 10^13 Ω amplifier technology [3] to further identify and quantify the recycled components. [1] Elliott et al. (1997). Journal of Geophysical Research, 102: 14991-15019. [2] Kent & Elliott (2002). Chemical Geology, 183: 263-286. [3] Koornneef et al. (2019). Nature Communications 10, 323

    The isolation of VCAM-1+ endothelial cell-derived extracellular vesicles using microfluidics

    Get PDF
    Background: Vascular cell adhesion molecule-1 (VCAM-1+) endothelial cell-derived extracellular vesicles (EC-EVs) are augmented in cardiovascular disease, where they can signal the deployment of immune cells from the splenic reserve. Endothelial cells in culture activated with pro-inflammatory tumor necrosis factor-α (TNF-a) also release VCAM-1+ EC-EVs. However, isolating VCAM-1+ EC-EVs from conditioned cell culture media for subsequent in-depth analysis remains challenging. Aim: We utilized the extracellular vesicles (EV) microfluidics herringbone chip (EVHB-Chip), coated with anti-VCAM-1 antibodies, for selective capture of VCAM-1+ cells and EC-EVs. Methods and Results: Engineered EA.hy926 endothelial cells overexpressing VCAM-1 (P < 0.001 versus control) showed increased binding to the VCAM-1- EVHB-Chip versus an IgG device. TNF-α-stimulated human umbilical cord vein endothelial cells (HUVECs) exhibited elevated VCAM-1 protein levels (P < 0.001) and preferential binding to the VCAM-1- EVHB-Chip versus the IgG device. HUVECs stimulated with TNF-α showed differential gene expression of intercellular adhesion molecule-1 (ICAM-1) (P < 0.001) and VCAM-1 (P < 0.001) by digital droplet PCR versus control cells. HUVEC-derived EC-EVs were positive for CD9, CD63, HSP70, and ALIX and had a modal size of 83.5 nm. Control and TNF-α-stimulated HUVEC-derived EC-EV cultures were captured on the VCAM-1- EVHB-Chip, demonstrating selective capture. VCAM-1+ EC-EV were significantly enriched for ICAM-1 (P < 0.001) mRNA transcripts. Conclusion: This study presents a novel approach using the EVHB-Chip, coated with anti-VCAM-1 antibodies and digital droplet PCR for the study of VCAM-1+ EC-EVs. Isolation of VCAM-1+ EC-EV from heterogeneous sources such as conditioned cell culture media holds promise for subsequent detailed characterization, and may facilitate the study of VCAM-1+ EC-EVs in cardiovascular and metabolic diseases, for disease monitoring and therapeutic insights

    Can be gravitational waves markers for an extra-dimension?

    Full text link
    The main issue of the present letter is to fix specific features (which turn out being independent of extradimension size) of gravitational waves generated before a dimensional compactification process. Valuable is the possibility to detect our prediction from gravitational wave experiment without high energy laboratory investigation. In particular we show how gravitational waves can bring information on the number of Universe dimensions. Within the framework of Kaluza-Klein hypotheses, a different morphology arises between waves generated before than the compactification process settled down and ordinary 4-dimensional waves. In the former case the scalar and tensor degrees of freedom can not be resolved. As a consequence if were detected gravitational waves having the feature here predicted (anomalous polarization amplitudes), then they would be reliable markers for the existence of an extra dimension.Comment: 5 pages, two figure, to appear on Int. Journ. Mod. Phys.

    Indexed left atrial volume, C-reactive protein and erythrocyte sedimentation rate as predictors of recurrence of non-valvular atrial fibrillation after successful cardioversion

    Get PDF
    Indexed left atrial volume, C-reactive protein and erythrocyte sedimentation rate as predictors of recurrence of non-valvular atrial fibrillation after successful cardioversio

    Diagnosis of focal liver lesions from ultrasound using deep learning

    Get PDF
    PURPOSE: The purpose of this study was to create an algorithm that simultaneously detects and characterizes (benign vs. malignant) focal liver lesion (FLL) using deep learning. MATERIALS AND METHODS: We trained our algorithm on a dataset proposed during a data challenge organized at the 2018 Journées Francophones de Radiologie. The dataset was composed of 367 two-dimensional ultrasound images from 367 individual livers, captured at various institutions. The algorithm was guided using an attention mechanism with annotations made by a radiologist. The algorithm was then tested on a new data set from 177 patients. RESULTS: The models reached mean ROC-AUC scores of 0.935 for FLL detection and 0.916 for FLL characterization over three shuffled three-fold cross-validations performed with the training data. On the new dataset of 177 patients, our models reached a weighted mean ROC-AUC scores of 0.891 for seven different tasks. CONCLUSION: This study that uses a supervised-attention mechanism focused on FLL detection and characterization from liver ultrasound images. This method could prove to be highly relevant for medical imaging once validated on a larger independent cohort

    Indexed left atrial volume is superior to left atrial diameter in predicting nonvalvular atrial fibrillation recurrence after successful cardioversion: a prospective study.

    Get PDF
    BACKGROUND: Although indexed left atrial volume (iLAV) is the most accurate measure of left atrial size, it has not been evaluated prospectively as predictor of recurrence of atrial fibrillation (AFib) after successful cardioversion (CV). METHODS: We prospectively selected 76 patients (mean age 66.1 ± 13.6 years, 65.8% men) with AFib who underwent successful CV. Baseline clinical and echocardiographic characteristics were obtained before CV. LAV was measured using Simpson's method and indexed to body surface area. All patients were scheduled for follow-up visit at 1, 6, 12 months, and then annually. A 24-hour Holter ECG was performed within 6 months and each time the patients reported symptoms suggestive of arrhythmia. RESULTS: The 52 patients (68.4%) with AFib recurrence had larger iLAV (35.5 ± 8.9 mL/m(2) vs 27.0 ± 6.7 mL/m(2) , P < 0.001). Anteroposterior LA diameter was not associated with AFib relapse (OR 1.08, 95% CI: 0.96-1.21, P = 0.09). Each unit increase in iLAV was associated with a 1.15-fold increased risk of recurrence (OR 1.15, 95% CI: 1.06-1.25, P < 0.001). In a multivariable model, iLAV remained the only independent predictor of relapse (adjusted OR 1.14, 95% CI: 1.02-1.28, P = 0.02). The area under ROC curves, generated to compare LA diameter, and iLAV as predictors of AFib recurrence were 0.56 (SE 0.07) versus 0.78 (SE 0.05), respectively (P = 0.003). CONCLUSION: This is the first prospective study to show that larger iLAV, as a more accurate measure of LA remodeling than anteroposterior diameter, is strongly and independently associated with a higher risk of AFib recurrence after CV
    • …
    corecore