3,304 research outputs found
The early reionization with the primordial magnetic fields
The early reionization of the intergalactic medium, which is favored from the
WMAP temperature-polarization cross-correlations, contests the validity of the
standard scenario of structure formation in the cold dark matter cosmogony. It
is difficult to achieve early enough star formation without rather extreme
assumptions such as very high escape fraction of ionizing photons from
proto-galaxies or a top-heavy initial mass function. Here we propose an
alternative scenario that is additional fluctuations on small scales induced by
primordial magnetic fields trigger the early structure formation. We found that
ionizing photons from Population III stars formed in dark haloes can easily
reionize the universe by if the strength of primordial magnetic
fields is larger than Gauss.Comment: 8 pages, 5 figures. accepted for publication in MNRA
Cosmological production of H_2 before the formation of the first galaxies
Previous calculations of the pregalactic chemistry have found that a small
amount of H_2, x[H_2]=n[H_2]/n[H] = 2.6e-6, is produced catalytically through
the H^-, H_2^+, and HeH^+ mechanisms. We revisit this standard calculation
taking into account the effects of the nonthermal radiation background produced
by cosmic hydrogen recombination, which is particularly effective at destroying
H^- via photodetachment. We also take into consideration the non-equilibrium
level populations of H_2^+, which occur since transitions among the
rotational-vibrational levels are slow compared to photodissociation. The new
calculation predicts a final H_2 abundance of x[H_2] = 6e-7 for the standard
cosmology. This production is due almost entirely to the H^- mechanism, with ~1
per cent coming from HeH^+ and ~0.004 per cent from H_2^+. We evaluate the
heating of the diffuse pregalactic gas from the chemical reactions that produce
H_2 and from rotational transitions in H_2, and find them to be negligible.Comment: 13 pages, 5 figures, MNRAS submitte
Probing the Magnetic Field Structure in Gamma-Ray Bursts through Dispersive Plasma Effects on the Afterglow Polarization
(Abr) The origin and structure of magnetic fields in Gamma-Ray Burst (GRB)
fireball plasmas are two of the most important open questions in all GRB
models. We show that the structure and strength of the magnetic field may be
constrained by radio and IR observations of the early afterglow, where plasma
effects on the polarization of propagating radiation are significant. We
calculate these propagation effects for cold and relativistic plasmas, and find
that in the presence of a uniform equipartition field the degree of linear
polarization is suppressed, and circular polarization prevails at low
frequencies, nu < 1-3 GHz, (2x10^11 Hz < nu < few x 10^14 Hz) in the forward
(reverse) shock. At higher frequencies linear polarization dominates. At the
frequency of the transition between circular and linear polarization, the net
level of polarization is minimal, ~10-20%. These features are nearly
independent of the circumburst density. The transition frequency is smaller by
a factor of ~10 when the uniform field is much weaker than equipartition. The
dependence of these results on viewing geometry, outflow collimation and
magnetic field orientation is discussed. When the configuration of the field is
entangled over length scales much smaller than the extent of the emitting
plasma, the aforementioned effects should not be observed and a linear
polarization at the few % level is expected. Polarimetric observations during
the early afterglow, and particularly of the reverse shock emission, may
therefore place strong constraints on the structure and strength of the
magnetic field within the fireball plasma.Comment: 12 pages, 6 figures. Accepted for publication in ApJ. Revised version
includes improved discussion of viewing and fireball geometry, with
implications to resulting polarizatio
Resolving Gamma-Ray Burst 000301C with a Gravitational Microlens
The afterglow of the Gamma-Ray Burst (GRB) 000301C exhibited achromatic,
short time-scale variability that is difficult to reconcile with the standard
relativistic shock model. We interpret the observed light curves as a
microlensing event superimposed on power-law flux decays typical of afterglows.
In general, a relativistic GRB shock appears on the sky as a thin ring
expanding at a superluminal speed. Initially the ring is small relative to its
angular separation from the lens and so its flux is magnified by a constant
factor. As the ring grows and sweeps across the lens its magnification reaches
a maximum. Subsequently, the flux gradually recovers its unlensed value. This
behavior involves only three free parameters in its simplest formulation and
was predicted theoretically by Loeb & Perna (1998). Fitting the available
R-band photometric data of GRB 000301C to a simple model of the microlensing
event and a broken power-law for the afterglow, we find reasonable values for
all the parameters and a reduced chi^2/DOF parameter of 1.48 compared with 2.99
for the broken power-law fit alone. The peak magnification of ~2 occurred 3.8
days after the burst. The entire optical-IR data imply a width of the GRB ring
of order 10% of its radius, similar to theoretical expectations. The angular
resolution provided by microlensing is better than a micro-arcsecond. We infer
a mass of approximately 0.5 M_Sun for a lens located half way to the source at
z_s=2.04. A galaxy 2'' from GRB 000301C might be the host of the stellar lens,
but current data provides only an upper-limit on its surface brightness at the
GRB position.Comment: to appear in the ApJ Letters, 13 pages, 3 figures (one additional
figure included); all data used for the fits available at
ftp://cfa-ftp.harvard.edu/pub/kstanek/GRB000301C/ and through WWW at
http://cfa-www.harvard.edu/cfa/oir/Research/GRB
Probing Primordial Magnetic Fields with the 21cm Fluctuations
Primordial magnetic fields possibly generated in the very early universe are
one of the candidates for the origin of magnetic fields observed in many
galaxies and galaxy clusters. After recombination, the dissipation process of
the primordial magnetic fields increases the baryon temperature. The Lorentz
force acts on the residual ions and electrons to generate density fluctuations.
These effects are imprinted on the cosmic microwave background (CMB) brightness
temperature fluctuations produced by the neutral hydrogen 21cm line. We
calculate the angular power spectrum of brightness temperature fluctuations for
the model with the primordial magnetic fields of a several nano Gauss strength
and a power-law spectrum. It is found that the overall amplitude and the shape
of the brightness temperature fluctuations depend on the strength and the
spectral index of the primordial magnetic fields. Therefore, it is expected
that the observations of the CMB brightness temperature fluctuations give us a
strong constraint on the primordial magnetic fields.Comment: 12 pages, submitted to MNRA
Emission from Bow Shocks of Beamed Gamma-Ray Bursts
Beamed gamma-ray burst (GRB) sources produce a bow shock in their gaseous
environment. The emitted flux from this bow shock may dominate over the direct
emission from the jet for lines of sight which are outside the angular radius
of the jet emission, theta. The event rate for these lines of sight is
increased by a factor of 260*(theta/5_degrees)^{-2}. For typical GRB
parameters, we find that the bow shock emission from a jet with half-angle of
about 5 degrees is visible out to tens of Mpc in the radio and hundreds of Mpc
in the X-rays. If GRBs are linked to supernovae, studies of peculiar supernovae
in the local universe should reveal this non-thermal bow shock emission for
weeks to months following the explosion.Comment: ApJ, submitted, 15 pages, 3 figure
Detecting the Earliest Galaxies Through Two New Sources of 21cm Fluctuations
The first galaxies that formed at a redshift ~20-30 emitted continuum photons
with energies between the Lyman-alpha and Lyman limit wavelengths of hydrogen,
to which the neutral universe was transparent except at the Lyman-series
resonances. As these photons redshifted or scattered into the Lyman-alpha
resonance they coupled the spin temperature of the 21cm transition of hydrogen
to the gas temperature, allowing it to deviate from the microwave background
temperature. We show that the fluctuations in the radiation emitted by the
first galaxies produced strong fluctuations in the 21cm flux before the
Lyman-alpha coupling became saturated. The fluctuations were caused by biased
inhomogeneities in the density of galaxies, along with Poisson fluctuations in
the number of galaxies. Observing the power-spectra of these two sources would
probe the number density of the earliest galaxies and the typical mass of their
host dark matter halos. The enhanced amplitude of the 21cm fluctuations from
the era of Lyman-alpha coupling improves considerably the practical prospects
for their detection.Comment: 11 pages, 7 figures, ApJ, published. Normalization fixed in top
panels of Figures 4-
- âŠ