246 research outputs found

    Excited state properties of modified pigment of bacterial photosynthesis

    Get PDF

    Strong coupling constants of bottom and charmed mesons with scalar, pseudoscalar and axial vector kaons

    Get PDF
    The strong coupling constants, gDsDK0g_{D_{s}DK_0^*}, gBsBK0g_{B_{s}BK_0^*}, gDsDKg_{D^{\ast}_{s}D K}, gBsBKg_{B^{\ast}_{s}BK}, gDsDK1g_{D^{\ast}_{s}D K_1} and gBsBK1g_{B^{\ast}_{s}BK_1}, where K0K_0^*, KK and K1K_1 are scalar, pseudoscalar and axial vector kaon mesons, respectively are calculated in the framework of three-point QCD sum rules. In particular, the correlation functions of the considered vertices when both B(D)B(D) and K0(K)(K1)K_0^*(K)(K_1) mesons are off-shell are evaluated. In the case of K1K_1, which is either K1(1270)K_1(1270) or K1(1400)K_1(1400), the mixing between these two states are also taken into account. A comparison of the obtained result with the existing prediction on gDsDKg_{D^{\ast}_{s}D K} as the only coupling constant among the considered vertices, previously calculated in the literature, is also made.Comment: 20 Pages, 3 Figures and 8 Table

    Low energy onset of nuclear shadowing in photoabsorption

    Get PDF
    The early onset of nuclear shadowing in photoabsorption at low photon energies has recently been interpreted as a possible signature of a decrease of the rho meson mass in nuclei. We show that one can understand this early onset within simple Glauber theory if one takes the negative real part of the rho N scattering amplitudes into account, corresponding to a higher effective mass of the rho meson in nuclear medium.Comment: REVTEX, 9 pages, including 4 eps figure

    Renormalization in Self-Consistent Approximations schemes at Finite Temperature I: Theory

    Full text link
    Within finite temperature field theory, we show that truncated non-perturbative self-consistent Dyson resummation schemes can be renormalized with local counter-terms defined at the vacuum level. The requirements are that the underlying theory is renormalizable and that the self-consistent scheme follows Baym''s Φ\Phi-derivable concept. The scheme generates both, the renormalized self-consistent equations of motion and the closed equations for the infinite set of counter terms. At the same time the corresponding 2PI-generating functional and the thermodynamical potential can be renormalized, in consistency with the equations of motion. This guarantees the standard Φ\Phi-derivable properties like thermodynamic consistency and exact conservation laws also for the renormalized approximation schemes to hold. The proof uses the techniques of BPHZ-renormalization to cope with the explicit and the hidden overlapping vacuum divergences.Comment: 22 Pages 1 figure, uses RevTeX4. The Revision concerns the correction of some minor typos, a clarification concerning the real-time contour structure of renormalization parts and some comments concerning symmetries in the conclusions and outloo

    Nuclear shadowing at low photon energies

    Full text link
    We calculate the shadowing effect in nuclear photoabsorption at low photon energies (1-3 GeV) within a multiple scattering approach. We avoid some of the high energy approximations that are usually made in simple Glauber theory like the narrow width and the eikonal approximation. We find that the main contribution to nuclear shadowing at low energies stems from ρ0\rho^0 mesons with masses well below their pole mass. We also show that the possibility of scattering in non forward directions allows for a new contribution to shadowing at low energies: the production of neutral pions as intermediate hadronic states enhances the shadowing effect in the onset region. For light nuclei and small photon energies they give rise to about 30% of the total shadowing effect.Comment: RevTeX, 16 pages including 6 eps figures; new calculation of effective pion propagator, negligible effect on results; version to be published in Phys. Rev.

    The Long Journey from Ab Initio Calculations to Density Functional Theory for Nuclear Large Amplitude Collective Motion

    Full text link
    At present there are two vastly different ab initio approaches to the description of the the many-body dynamics: the Density Functional Theory (DFT) and the functional integral (path integral) approaches. On one hand, if implemented exactly, the DFT approach can allow in principle the exact evaluation of arbitrary one-body observable. However, when applied to Large Amplitude Collective Motion (LACM) this approach needs to be extended in order to accommodate the phenomenon of surface-hoping, when adiabaticity is strongly violated and the description of a system using a single (generalized) Slater determinant is not valid anymore. The functional integral approach on the other hand does not appear to have such restrictions, but its implementation does not appear to be straightforward endeavor. However, within a functional integral approach one seems to be able to evaluate in principle any kind of observables, such as the fragment mass and energy distributions in nuclear fission. These two radically approaches can likely be brought brought together by formulating a stochastic time-dependent DFT approach to many-body dynamics.Comment: 9 page

    Transcriptional regulation of the urokinase receptor (u-PAR) - A central molecule of invasion and metastasis

    Get PDF
    The phenomenon of tumor-associated proteolysis has been acknowledged as a decisive step in the progression of cancer. This short review focuses on the urokinase receptor (u-PAR), a central molecule involved in tumor-associated invasion and metastasis, and summarizes the transcriptional regulation of u-PAR. The urokinase receptor (u-PAR) is a heavily glycosylated cell surface protein and binds the serine protease urokinase specifically and with high affinity. It consists of three similar cysteine-rich repeats and is anchored to the cell membrane via a GPI-anchor. The u-PAR gene comprises 7 exons and is located on chromosome 19q13. Transcriptional activation of the u-PAR promoter region can be induced by binding of transcription factors (Sp1, AP-1, AP-2, NF-kappaB). One current study gives an example for transcriptional downregulation of u-PAR through a PEA3/ets transcriptional silencing element. Knowledge of the molecular regulation of this molecule in tumor cells could be very important for diagnosis and therapy in the near future

    On QCD sum rules for vector mesons in nuclear medium

    Get PDF
    Vector mesons show up in the electromagnetic current-current correlator. QCD sum rules provide a constraint on hadronic models for this correlator. This constraint is discussed for the case of finite nuclear density concerning the longitudinal as well as the transverse part of the current-current correlator at finite three-momentum.Comment: RevTeX, 38 pages, 5 figure
    corecore