10 research outputs found

    Manual for ESHRE guideline development

    Get PDF

    Good practice recommendations on add-ons in reproductive medicine

    Get PDF
    STUDY QUESTION: Which add-ons are safe and effective to be used in ART treatment? SUMMARY ANSWER: Forty-two recommendations were formulated on the use of add-ons in the diagnosis of fertility problems, the IVF laboratory and clinical management of IVF treatment. WHAT IS KNOWN ALREADY: The innovative nature of ART combined with the extremely high motivation of the patients has opened the door to the wide application of what has become known as 'add-ons' in reproductive medicine. These supplementary options are available to patients in addition to standard fertility procedures, typically incurring an additional cost. A diverse array of supplementary options is made available, encompassing tests, drugs, equipment, complementary or alternative therapies, laboratory procedures, and surgical interventions. These options share the common aim of stating to enhance pregnancy or live birth rates, mitigate the risk of miscarriage, or expedite the time to achieving pregnancy. STUDY DESIGN, SIZE, DURATION: ESHRE aimed to develop clinically relevant and evidence-based recommendations focusing on the safety and efficacy of add-ons currently used in fertility procedures in order to improve the quality of care for patients with infertility. PARTICIPANTS/MATERIALS, SETTING, METHODS: ESHRE appointed a European multidisciplinary working group consisting of practising clinicians, embryologists, and researchers who have demonstrated leadership and expertise in the care and research of infertility. Patient representatives were included in the working group. To ensure that the guidelines are evidence-based, the literature identified from a systematic search was reviewed and critically appraised. In the absence of any clear scientific evidence, recommendations were based on the professional experience and consensus of the working group. The guidelines are thus based on the best available evidence and expert agreement. Prior to publication, the guidelines were reviewed by 46 independent international reviewers. A total of 272 comments were received and incorporated where relevant. MAIN RESULTS AND THE ROLE OF CHANCE: The multidisciplinary working group formulated 42 recommendations in three sections; diagnosis and diagnostic tests, laboratory tests and interventions, and clinical management. LIMITATIONS, REASONS FOR CAUTION: Of the 42 recommendations, none could be based on high-quality evidence and only four could be based on moderate-quality evidence, implicating that 95% of the recommendations are supported only by low-quality randomized controlled trials, observational data, professional experience, or consensus of the development group. WIDER IMPLICATIONS OF THE FINDINGS: These guidelines offer valuable direction for healthcare professionals who are responsible for the care of patients undergoing ART treatment for infertility. Their purpose is to promote safe and effective ART treatment, enabling patients to make informed decisions based on realistic expectations. The guidelines aim to ensure that patients are fully informed about the various treatment options available to them and the likelihood of any additional treatment or test to improve the chance of achieving a live birth. STUDY FUNDING/COMPETING INTEREST(S): All costs relating to the development process were covered from ESHRE funds. There was no external funding of the development process or manuscript production. K.L. reports speakers fees from Merck and was part of a research study by Vitrolife (unpaid). T.E. reports consulting fees from Gynemed, speakers fees from Gynemed and is part of the scientific advisory board of Hamilton Thorne. N.P.P. reports grants from Merck Serono, Ferring Pharmaceutical, Theramex, Gedeon Richter, Organon, Roche, IBSA and Besins Healthcare, speakers fees from Merck Serono, Ferring Pharmaceutical, Theramex, Gedeon Richter, Organon, Roche, IBSA and Besins Healthcare. S.R.H. declares being managing director of Fertility Europe, a not-for-profit organization receiving financial support from ESHRE. I.S. is a scientific advisor for and has stock options from Alife Health, is co-founder of IVFvision LTD (unpaid) and received speakers' fee from the 2023 ART Young Leader Prestige workshop in China. A.P. reports grants from Gedeon Richter, Ferring Pharmaceuticals and Merck A/S, consulting fees from Preglem, Novo Nordisk, Ferring Pharmaceuticals, Gedeon Richter, Cryos and Merck A/S, speakers fees from Gedeon Richter, Ferring Pharmaceuticals, Merck A/S, Theramex and Organon, travel fees from Gedeon Richter. The other authors disclosed no conflicts of interest. DISCLAIMER: This Good Practice Recommendations (GPRs) document represents the views of ESHRE, which are the result of consensus between the relevant ESHRE stakeholders and are based on the scientific evidence available at the time of preparation.ESHRE GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or bedeemedinclusive of all proper methods of care, or be exclusive of other methods of care reasonably directed to obtaining the same results.Theydo not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type.Furthermore, ESHRE GPRs do not constitute or imply the endorsement, or favouring, of any of the included technologies by ESHRE

    Preparation and monitoring of small animals in renal MRI

    Get PDF
    Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanism of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide an overview of the preparation and monitoring of small animals before, during, and after surgical interventions or MR imaging. Standardization of experimental settings such as body temperature or hydration of animals and minimizing pain and distress are essential for diminishing nonexperimental variables as well as for conducting ethical research.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers

    Watch It Grow: An innovative platform for a sustainable growth of the Belgian potato production

    No full text
    Belgium is the largest exporter of frozen potato products in the world. Each year, Belgian companies process over four million tons of potatoes into French fries, potato chips and other products. To ensure a sustainable growth of the potato sector, a higher potato production is needed. In this context, expansion of agricultural land is not an option.Potato processors, traders and packers largely work with potato contracts. The close follow up of contracted parcels is important to improve the quantity and quality of the crop and reduce risks related to storage, packaging or processing. The use of geo-information by the sector is limited, notwithstanding the great benefits that this type of information may offer. At the same time, new sensor-based technologies continue to gain importance and farmers increasingly invest in these technologies.The combination of geo-information and crop modelling might strengthen the competitiveness of the Belgian potato chain in a global market.In the frame of the iPot project, financed by the Belgian Science Policy Office (BELSPO), a commercial webtool called Watch iT Grow helping potato traders, the processing industry as well as farmers to monitor the potato growth has been developed.By using weather data, satellite images, aerial images (taken with drones) and data from ground measurements, users are for instance able to follow whether the crops emerge properly from the ground, how the growth is developing, whether diseases might be present or when farmers can start harvesting. The collected data are combined into crop growth models allowing the webtool to propose as well yields estimations and predictions per plot
    corecore