28 research outputs found

    Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) overexpression in pancreatic ductal adenocarcinoma correlates with poor survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic ductal adenocarcinoma is a lethal disease with a 5-year survival rate of 4% and typically presents in an advanced stage. In this setting, prognostic markers identifying the more agrressive tumors could aid in managment decisions. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3, also known as IMP3 or KOC) is an oncofetal RNA-binding protein that regulates targets such as insulin-like growth factor-2 (IGF-2) and ACTB (beta-actin).</p> <p>Methods</p> <p>We evaluated the expression of IGF2BP3 by immunohistochemistry using a tissue microarray of 127 pancreatic ductal adenocarcinomas with tumor grade 1, 2 and 3 according to WHO criteria, and the prognostic value of IGF2BP3 expression.</p> <p>Results</p> <p>IGF2BP3 was found to be selectively overexpressed in pancreatic ductal adenocarcinoma tissues but not in benign pancreatic tissues. Nine (38%) patient samples of tumor grade 1 (n = 24) and 27 (44%) of tumor grade 2 (n = 61) showed expression of IGF2BP3. The highest rate of expression was seen in poorly differentiated specimen (grade 3, n = 42) with 26 (62%) positive samples. Overall survival was found to be significantly shorter in patients with IGF2BP3 expressing tumors (P = 0.024; RR 2.3, 95% CI 1.2-4.8).</p> <p>Conclusions</p> <p>Our data suggest that IGF2BP3 overexpression identifies a subset of pancreatic ductal adenocarcinomas with an extremely poor outcome and supports the rationale for developing therapies to target the IGF pathway in this cancer.</p

    CD36 Inhibitors Reduce Postprandial Hypertriglyceridemia and Protect against Diabetic Dyslipidemia and Atherosclerosis

    Get PDF
    CD36 is recognized as a lipid and fatty acid receptor and plays an important role in the metabolic syndrome and associated cardiac events. The pleiotropic activity and the multiple molecular associations of this scavenger receptor with membrane associated molecules in different cells and tissues have however questioned its potential as a therapeutic target. The present study shows that it is possible to identify low molecular weight chemicals that can block the CD36 binding and uptake functions. These inhibitors were able to reduce arterial lipid deposition, fatty acid intestinal transit, plasma concentration of triglycerides and glucose, to improve insulin sensitivity, glucose tolerance and to reduce the plasma concentration of HbAc1 in different and independent rodent models. Correlation between the anti-CD36 activity of these inhibitors and the known pathophysiological activity of this scavenger receptor in the development of atherosclerosis and diabetes were observed at pharmacological doses. Thus, CD36 might represent an attractive therapeutic target

    Leuprorelin Acetate Long-Lasting Effects on GnRH Receptors of Prostate Cancer Cells: An Atomic Force Microscopy Study of Agonist/Receptor Interaction

    Get PDF
    High cell-surface GnRH receptor (GnRH-R) levels have been shown to have a major influence on the extent of GnRH agonist-mediated tumor growth inhibition. The ability of the GnRH agonist leuprorelin acetate (LA) to induce a post-transcriptional upregulation of GnRH-R at the plasma membrane of androgen-sensitive (LNCaP) and -insensitive (PC-3) prostate cancer (PCa) cells has been previously demonstrated by Western blotting. Here we performed single molecule force spectroscopy by using Atomic Force Microscopy (AFM), which has proven to be a powerful tool allowing for investigation of living cell surface biological features, such as the so far unclear GnRH agonist/receptor interaction. Thus, in the hormone-insensitive PC-3 cells, we characterized the strength of the LA-receptor binding, and the amount and distribution of the functional receptor molecules on the cell surface. The effect of a long and continuous treatment (up to 30 days) with the agonist (10-11 and 10-6 M) on the same parameters was also investigated. A GnRH-R increase was observed, reaching the maximum (~80%) after 30 days of treatment with the highest dose of LA (10-6 M). The analogue-induced increase in GnRH-R was also demonstrated by Western blotting. In addition, two different receptor bound strengths were detected by AFM, which suggests the existence of two GnRH-R classes. A homogeneous distribution of the unbinding events has been found on untreated and treated PC-3 cell surfaces. The persistence of high receptor levels at the membrane of these living cells may warrant the maintenance of the response to LA also in androgen-unresponsive PCa. Moreover, the determination of ligand/receptor bond strength could shed light on the poorly understood event of LA/GnRH-R interaction and/or address structural/chemical agonist optimizations. \ua9 2013 Lama et al

    Development of a polyclonal antiserum for the detection of the isoforms of the receptors for human growth hormone-releasing hormone on tumors

    No full text
    Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various human cancers by multiple mechanisms, which include direct effects on tumor cells through the splice variants (SV) of the GHRH receptor. Our findings suggest that the tumoral protein encoded by SV 1 (SV(1)) is a likely functional receptor. The aim of this study was to develop a polyclonal antiserum against a polypeptide analog of segment 1-25 of the putative SV(1) receptor protein. Rabbits were immunized with [Ala-23]SV(1) (1-25)-Tyr-26-Cys-27-NH(2) as a hapten, conjugated to BSA or keyhole limpet hemocyanin. The antisera thus generated were evaluated by RIA for binding to the radiolabeled hapten. The specificity and sensitivity of the antisera were studied on xenografts of RL and HT human non-Hodgkin's lymphomas. The sera raised against keyhole limpet hemocyanin-SV(1) hapten, showed binding values of 50-75% at a 1:56,000 dilution. In Western blot analyses, the purified polyclonal antibody recognized a specific signal with a molecular mass of ≈40 kDa in RL and HT lymphomas. This band corresponds to the estimated molecular mass of the GHRH receptor isoform encoded by SV(1). RT-PCR and ligand binding studies also revealed the expression of SV(1) and the presence of high-affinity binding sites for GHRH on RL and HT tumors. Because the antiserum developed recognizes the tumoral GHRH receptor protein encoded by SV(1), it should be of value in various investigations
    corecore