245 research outputs found

    Self-dual supersymmetric nonlinear sigma models

    Full text link
    In four-dimensional N=1 Minkowski superspace, general nonlinear sigma models with four-dimensional target spaces may be realised in term of CCL (chiral and complex linear) dynamical variables which consist of a chiral scalar, a complex linear scalar and their conjugate superfields. Here we introduce CCL sigma models that are invariant under U(1) "duality rotations" exchanging the dynamical variables and their equations of motion. The Lagrangians of such sigma models prove to obey a partial differential equation that is analogous to the self-duality equation obeyed by U(1) duality invariant models for nonlinear electrodynamics. These sigma models are self-dual under a Legendre transformation that simultaneously dualises (i) the chiral multiplet into a complex linear one; and (ii) the complex linear multiplet into a chiral one. Any CCL sigma model possesses a dual formulation given in terms of two chiral multiplets. The U(1) duality invariance of the CCL sigma model proves to be equivalent, in the dual chiral formulation, to a manifest U(1) invariance rotating the two chiral scalars. Since the target space has a holomorphic Killing vector, the sigma model possesses a third formulation realised in terms of a chiral multiplet and a tensor multiplet. The family of U(1) duality invariant CCL sigma models includes a subset of N=2 supersymmetric theories. Their target spaces are hyper Kahler manifolds with a non-zero Killing vector field. In the case that the Killing vector field is triholomorphic, the sigma model admits a dual formulation in terms of a self-interacting off-shell N=2 tensor multiplet. We also identify a subset of CCL sigma models which are in a one-to-one correspondence with the U(1) duality invariant models for nonlinear electrodynamics. The target space isometry group for these sigma models contains a subgroup U(1) x U(1).Comment: 22 page

    Three-dimensional (p,q) AdS superspaces and matter couplings

    Full text link
    We introduce N-extended (p,q) AdS superspaces in three space-time dimensions, with p+q=N and p>=q, and analyse their geometry. We show that all (p,q) AdS superspaces with X^{IJKL}=0 are conformally flat. Nonlinear sigma-models with (p,q) AdS supersymmetry exist for p+q4 the target space geometries are highly restricted). Here we concentrate on studying off-shell N=3 supersymmetric sigma-models in AdS_3. For each of the cases (3,0) and (2,1), we give three different realisations of the supersymmetric action. We show that (3,0) AdS supersymmetry requires the sigma-model to be superconformal, and hence the corresponding target space is a hyperkahler cone. In the case of (2,1) AdS supersymmetry, the sigma-model target space must be a non-compact hyperkahler manifold endowed with a Killing vector field which generates an SO(2) group of rotations of the two-sphere of complex structures.Comment: 52 pages; V3: minor corrections, version published in JHE

    Extended supersymmetric sigma models in AdS_4 from projective superspace

    Full text link
    There exist two superspace approaches to describe N=2 supersymmetric nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and arXiv:1108.5290; and (ii) in terms of N=2 polar supermultiplets using the AdS projective-superspace techniques developed in arXiv:0807.3368. The virtue of the approach (i) is that it makes manifest the geometric properties of the N=2 supersymmetric sigma-models in AdS_4. The target space must be a non-compact hyperkahler manifold endowed with a Killing vector field which generates an SO(2) group of rotations on the two-sphere of complex structures. The power of the approach (ii) is that it allows us, in principle, to generate hyperkahler metrics as well as to address the problem of deformations of such metrics. Here we show how to relate the formulation (ii) to (i) by integrating out an infinite number of N=1 AdS auxiliary superfields and performing a superfield duality transformation. We also develop a novel description of the most general N=2 supersymmetric nonlinear sigma-model in AdS_4 in terms of chiral superfields on three-dimensional N=2 flat superspace without central charge. This superspace naturally originates from a conformally flat realization for the four-dimensional N=2 AdS superspace that makes use of Poincare coordinates for AdS_4. This novel formulation allows us to uncover several interesting geometric results.Comment: 88 pages; v3: typos corrected, version published in JHE

    Goldstino superfields in N=2 supergravity

    Full text link
    We present off-shell N=2 supergravity actions, which exhibit spontaneously broken local supersymmetry and allow for de Sitter vacua for certain values of the parameters. They are obtained by coupling the standard N=2 supergravity-matter systems to the Goldstino superfields introduced in arXiv:1105.3001 and arXiv:1607.01277 in the rigid supersymmetric case. These N=2 Goldstino superfields include nilpotent chiral and linear supermultiplets. We also describe a new reducible N=1 Goldstino supermultiplet.Comment: 40 pages; V2: minor corrections, references added, published versio

    On 2D N=(4,4) superspace supergravity

    Full text link
    We review some recent results obtained in studying superspace formulations of 2D N=(4,4) matter-coupled supergravity. For a superspace geometry described by the minimal supergravity multiplet, we first describe how to reduce to components the chiral integral by using ``ectoplasm'' superform techniques as in arXiv:0907.5264 and then we review the bi-projective superspace formalism introduced in arXiv:0911.2546. After that, we elaborate on the curved bi-projective formalism providing a new result: the solution of the covariant type-I twisted multiplet constraints in terms of a weight-(-1,-1) bi-projective superfield.Comment: 18 pages, LaTeX, Contribution to the proceedings of the International Workshop "Supersymmetries and Quantum Symmetries" (SQS'09), Dubna, July 29-August 3 200

    Effective action of beta-deformed N = 4 SYM theory: Farewell to two-loop BPS diagrams

    Full text link
    Within the background field approach, all two-loop sunset vacuum diagrams, which occur in the Coulomb branch of N = 2 superconformal theories(including N = 4 SYM), obey the BPS condition m_3 = m_1 + m_2, where the masses are generated by the scalars belonging to a background N = 2 vector multiplet. These diagrams can be evaluated exactly, and prove to be homogeneous quadratic functions of the one-loop tadpoles J(m_1^2), J(m_2^2) and J(m_3^2), with the coefficients being rational functions of the squared masses. We demonstrate that, if one switches on the beta-deformation of the N = 4 SYM theory, the BPS condition no longer holds, and then generic two-loop sunset vacuum diagrams with three non-vanishing masses prove to be characterized by the following property: 2(m_1^2 m_2^2 +m_1^2 m_3^2 +m_2^2 m_3^2) > m_1^4 +m_2^4 +m_3^4. In the literature, there exist several techniques to compute such diagrams. For the beta-deformed N = 4 SYM theory, we carry out explicit two-loop calculations of the Kahler potential and F^4 term. Our considerations are restricted to the case of beta real.Comment: 42 pages, latex, 1 eps figure; V2: references adde

    Superform formulation for vector-tensor multiplets in conformal supergravity

    Full text link
    The recent papers arXiv:1110.0971 and arXiv:1201.5431 have provided a superfield description for vector-tensor multiplets and their Chern-Simons couplings in 4D N = 2 conformal supergravity. Here we develop a superform formulation for these theories. Furthermore an alternative means of gauging the central charge is given, making use of a deformed vector multiplet, which may be thought of as a variant vector-tensor multiplet. Its Chern-Simons couplings to additional vector multiplets are also constructed. This multiplet together with its Chern-Simons couplings are new results not considered by de Wit et al. in hep-th/9710212.Comment: 28 pages. V2: Typos corrected and references updated; V3: References updated and typo correcte
    • 

    corecore