406 research outputs found

    A Structural and Dynamical Study of Late-Type, Edge-On Galaxies: I. Sample Selection and Imaging Data

    Get PDF
    We present optical (B & R) and infrared (K_s) images and photometry for a sample of 49 extremely late-type, edge-on disk galaxies selected from the Flat Galaxy Catalog of Karenchentsev et al. (1993). Our sample was selected to include galaxies with particularly large axial ratios, increading the likelihood that the galaxies in the sample are truly edge-on. We have also concentrated the sample on galaxies with low apparent surface brightness, in order to increase the representation of intrinisically low surface brightness galaxies. Finally, the sample was chosen to have no apprarent bulges or optical warps so that the galaxies represent undisturbed, ``pure disk'' systems. The resulting sample forms the basis for a much larger spectroscopic study designed to place constraints on the physical quantities and processes which shape disk galaxies. The imaging data presented in this paper has been painstakingly reduced and calibrated to allow accurate surface photometry of features as faint as 30 mag/sqr-arcsec in B and 29 mag/sqr-arcsec in R on scales larger than 10 arcsec. Due to limitations in sky subtraction and flat fielding, the infrared data can reach only to 22.5 mag/sqr-arcsec in K_s on comparable scales. As part of this work, we have developed a new method for quantifying the reliability of surface photometry, which provides useful diagnostics for the presence of scattered light, optical emission from infrared cirrus, and other sources of non-uniform sky backgrounds.Comment: scheduled to appear in the Astronomical Journal, LaTeX, 36 pages including 7 pages of figures (fig 1-2,4). A low resolution version of Figure 3 is included in JPEG format; contours are seriously degraded. A full resolution Postscript version of Figure 3 (10.6Mb,gzipped) is available through anonymous ftp at ftp://ftp.astro.washington.edu/pub/users/jd/FGC/dalcanton.f3.ps.g

    Structural Parameters of Thin and Thick Disks in Edge-On Disk Galaxies

    Full text link
    We analyze the global structure of 34 late-type, edge-on, undisturbed, disk galaxies spanning a wide range of mass. We measure structural parameters for the galaxies using two-dimensional least-squares fitting to our RR-band photometry. The fits require both a thick and a thin disk to adequately fit the data. The thick disks have larger scale heights and longer scale lengths than the embedded thin disks, by factors of ~2 and ~1.25, respectively. The observed structural parameters agree well with the properties of thick and thin disks derived from star counts in the Milky Way and from resolved stellar populations in nearby galaxies. We find that massive galaxies' luminosities are dominated by the thin disk. However, in low mass galaxies (Vc < 120 km/s), thick disk stars contribute nearly half of the luminosity and dominate the stellar mass. Thus, although low mass dwarf galaxies appear blue, the majority of their stars are probably quite old. Our data are most easily explained by a formation scenario where the thick disk is assembled through direct accretion of stellar material from merging satellites while the thin disk is formed from accreted gas. The baryonic fraction in the thin disk therefore constrains the gas-richness of the merging pre-galactic fragments. If we include the mass in HI as part of the thin disk, the thick disk contains <10% of the baryons in high mass galaxies, and ~25-30% of the baryons in low-mass galaxies. We discuss how our trends can be explained by supernova-driven outflow at early times as well as the possibilities for predicting abundance trends in thick disks, and for removing discrepancies between semi-analytic galaxy formation models and the observed colors of low mass galaxies. (abstract abridged)Comment: 25 pages, 24 figures, accepted for publication in A

    Extremely Red Objects in Two Quasar Fields at z ~ 1.5

    Get PDF
    We present an investigation of the properties and environments of bright extremely red objects (EROs) found in the fields of the quasars TXS 0145+386 and 4C 15.55, both at z ~ 1.4. There is marginal evidence from Chandra ACIS imaging for hot cluster gas with a luminosity of a few 10^44 ergs/s in the field of 4C 15.55. The TXS 0145+386 field has an upper limit at a similar value, but it also clearly shows an overdensity of faint galaxies. None of the EROs are detected as X-ray sources. For two of the EROs that have spectral-energy distributions and rest-frame near-UV spectra that show that they are strongly dominated by old stellar populations, we determine radial-surface-brightness profiles from adaptive-optics images. Both of these galaxies are best fit by profiles close to exponentials, plus a compact nucleus comprising ~30% of the total light in one case and 8% in the other. Neither is well fit by an r^1/4-law profile. This apparent evidence for the formation of massive ~2 X 10^11 disks of old stars in the early universe indicates that at least some galaxies formed essentially monolithically, with high star-formation rates sustained over a few 10^8 years, and without the aid of major mergers.Comment: 25 pages, 13 figures, accepted to Ap

    The Role of Pressure in GMC Formation II: The H_2 - Pressure Relation

    Get PDF
    We show that the ratio of molecular to atomic gas in galaxies is determined by hydrostatic pressure and that the relation between the two is nearly linear. The pressure relation is shown to be good over three orders of magnitude for 14 galaxies including dwarfs, HI-rich, and H_2-rich galaxies as well as the Milky Way. The sample spans a factor of five in mean metallicity. The rms scatter of individual points of the relation is only about a factor of two for all the galaxies, though some show much more scatter than others. Using these results, we propose a modified star formation prescription based on pressure determining the degree to which the ISM is molecular. The formulation is different in high and low pressure regimes defined by whether the gas is primarily atomic or primarily molecular. This formulation can be implemented in simulations and provides a more appropriate treatment of the outer regions of spiral galaxies and molecule-poor systems such as dwarf irregulars and damped Lyman-alpha systems.Comment: 14 pages, 7 figures, Accepted to the Astrophysical Journa

    P.Giss. I 106 Revisited

    Get PDF
    Papyrologie in contex

    P. Bad. IV 55: ein neuer Text

    Get PDF
    Papyrologie in contex

    The Spathion Jar in the Papyri

    Get PDF
    Papyrologie in contex

    A Seventh-Century list of jars from Edfu

    Get PDF
    Papyrologie in contex

    Microlensing of Globular Clusters as a Probe of Galactic Structure

    Get PDF
    The spatial distribution of compact dark matter in our Galaxy can be determined in a few years of monitoring Galactic globular clusters for microlensing. Globular clusters are the only dense fields of stars distributed throughout the three-dimensional halo and hence are uniquely suited to probe its structure. The microlensing optical depths towards different clusters have varying contributions from the thin disk, thick disk, bulge, and halo of the Galaxy. Although measuring individual optical depths to all the clusters is a daunting task, we show that interesting Galactic structure information can be extracted with as few as 4040--120120 events in total for the entire globular cluster system (observable with 2--5 years of monitoring). The globular cluster microlensing is particularly sensitive to the core radius of the halo mass distribution and to the scale length, surface mass density, and radial scale height variations of the thin disk.Comment: 14 pages, 1 figure. Submitted to ApJ Letters. Uses aastex macro

    Inner Molecular Rings in Barred Galaxies: BIMA SONG CO Observations

    Full text link
    Although inner star-forming rings are common in optical images of barred spiral galaxies, observational evidence for the accompanying molecular gas has been scarce. In this paper we present images of molecular inner rings, traced using the CO (1-0) emission line, from the Berkeley-Illinois-Maryland-Association Survey of Nearby Galaxies (BIMA SONG). We detect inner ring CO emission from all five SONG barred galaxies classified as inner ring (type (r)). We also examine the seven SONG barred galaxies classified as inner spiral (type (s)); in one of these, NGC 3627, we find morphological and kinematic evidence for a molecular inner ring. Inner ring galaxies have been classified as such based on optical images, which emphasize recent star formation. We consider the possibility that there may exist inner rings in which star formation efficiency is not enhanced. However, we find that in NGC 3627 the inner ring star formation efficiency is enhanced relative to most other regions in that galaxy. We note that the SONG (r) galaxies have a paucity of CO and H alpha emission interior to the inner ring (except near the nucleus), while NGC 3627 has relatively bright bar CO and H alpha emission; we suggest that galaxies with inner rings such as NGC 3627 may be misclassified if there are significant amounts of gas and star formation in the bar.Comment: To be published in the Astrophysical Journal, July 2002 A version of the paper with full resolution figures is available at: http://www.astro.umd.edu/~mregan/ms.ps.g
    • …
    corecore