120 research outputs found

    Specific features of the luminescence and conductivity of zinc selenide on exposure to X-ray and optical excitation

    Full text link
    The set of experimental data on the X-ray-excited luminescence and X-ray induced conductivity of ZnSe are compared to the data on the photoluminescence and photoconductivity. It is experimentally established that the current-voltage characteristics and the kinetics of phosphorescence and current relaxation depend on the type of excitation. It is found that the external electric field influences the intensity and shape of bands in the luminescence spectra. It is shown that the character of excitation defines the kinetics of recombination, charge carrier trapping, and conductivity in wide-gap semiconductors.Comment: 7 pages, 7 figures, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 5, pp. 594-59

    Chemical Beam Epitaxy of Compound Semiconductors

    Get PDF
    Contains reports on three research projects and a list of publications.3M Company Faculty Development GrantAT&T Research Foundation Special Purpose GrantCharles S. Draper Laboratories Contract DL-H-418484Defense Advanced Research Projects Agency Subcontract 216-25013Defense Advanced Research Projects Agency Subcontract 542383Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant ECS 88-46919National Science Foundation Grant ECS 89-05909Defense Advanced Research Projects Agency Subcontract 5300716-07U.S. Navy - Office of Naval Research Contract N00014-88-K-0564Defense Advanced Research Projects Agency Subcontract 530-0716-07National Science Foundation Subcontract DMR 90-0789

    Chemical Beam Epitaxy of Compound Semiconductors

    Get PDF
    Contains an introduction, reports on three research projects and a list of publications.3M Company Faculty Development GrantDefense Advanced Research Projects Agency Subcontract 216-25013Defense Advanced Research Projects Agency Subcontract 542383Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant ECS 88-46919National Science Foundation Grant ECS 89-05909National Science Foundation Grant DMR 92-0295

    Gas Source Molecular Beam Epitaxy of Compound Semiconductors

    Get PDF
    Contains an introduction and reports on six research projects.Advanced Research Projects Agency Subcontract 284-25041Joint Services Electronics Program Contract DAAL03-92-C-0001National Center for Integrated Photonic Technology Contract 542-381National Science Foundation Grant DMR 92-02957National Science Foundation Contract DMR 92-02957National Science Foundation Grant DMR 90-2293

    Gas Source Molecular Beam Epitaxy of Compound Semiconductors

    Get PDF
    Contains an introduction and reports on seven research projects.Advanced Research Projects Agency Subcontract 284-25041Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH-04-95-1-0038National Center for Integrated Photonic Technology Contract 542-381National Center for Integrated Photonic Technology Grant subcontract 652-693U.S. Army Research Office/ AASERT Contract DAAH04-93-G-0175National Science Foundation Grant DMR 92-02957National Science Foundation Grant DMR 92-02957National Science Foundation Grant DMR 90-22933MIT Lincoln Laboratory Contract BX-5411National Science Foundation DMR 94-0033

    Nanostructures Technology, Research, and Applications

    Get PDF
    Contains reports on seventeen research projects and a list of publications.Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH04-95-1-0038Semiconductor Research Corporation Contract 94-MJ-550National Science Foundation Grant ECS 94-07078U.S. Army Research Office Contract DAAL03-92-G-0291Advanced Research Projects Agency/Naval Air Systems Command Contract N00019-92-K-0021National Aeronautics and Space Administration Contract NAS8-36748National Aeronautics and Space Administration Grant NAGW-2003IBM Corporation Contract 1622U.S. Army Research Office Grant DAAH04-94-G-0377U.S. Air Force - Office of Scientific Research Grant F-49-620-92-J-006

    Prognostic Factors in 77 Curative Chest Wall Resections for Isolated Breast Cancer Recurrence

    Get PDF
    Background: Full-thickness chest wall resection (CWR) is the preferred treatment for breast cancer (BC) patients with extensive isolated locoregional recurrence. It remains a challenge to select patients that will benefit most from this treatment. The aim of this study was to define prognostic factors in patients who undergo CWR with curative intent. Methods: BC patients who underwent a CWR with curative intent for recurrence of disease between 1986 and 2006 were included in this retrospective study. Twenty-two factors were studied in a univariate analyses, and multivariate stepwise Cox regression analyses was performed. Results: Seventy-seven patients were included in this study. The 5-year overall survival was 25%. There was one postoperative death. Univariate analyses showed that three prognostic factors were significantly correlated with OS and disease-free survival: (1) interval between primary treatment and CWR (P = .02 and .004, respectively), (2) chemotherapy for recurrence (P = .05 and .05, respectively), and (3) resection specimen smaller than 150 cm2(P = .03 and .009, respectively). An interval lasting >10 years between primary treatment and CWR remained statistically significantly correlated with better overall survival and disease-free survival after multivariate analyses. Conclusions: CWR is a safe treatment in patients who have isolated extensive BC recurrence. The best survival outcome was seen in patients after a disease-free interval of >10 years. Existing data show that adjuvant radiotherapy and adjuvant hormone therapy for estrogen-positive tumors improves overall survival. Neoadjuvant chemotherapy may be considered in individual patients

    Nanostructures, Technology, Research, and Applications

    Get PDF
    Contains reports on the nanostructures laboratory, eighteen research projects and a list of publications.Joint Services Electronics Program Grant DAAH04-95-1-0038Semiconductor Research Corporation Contract 95-LJ-550National Science Foundation Grant ECS 94-07078U.S. Army Research Office Grant DAAH04-95-1-0564Defense Advanced Research Projects Agency/Naval Air Systems Command Contract N00019-95-K-0131National Aeronautics and Space Administration Contract NAS8-38249National Aeronautics and Space Administration Grant NAGW-2003IBM Corporation Contract 1622U.S. Navy- Office of Naval Research Grant N00014-95-1-1297U.S. Army Research Office Grant DAAH04-94-G-0377U.S. Air Force - Office of Scientific Research Grant F-49-620-92-J-0064U.S. Air Force - Office of Scientific Research Grant F-49-620-95-1-031

    Epitaxial Growth and Processing of Compound Semiconductors

    Get PDF
    Contains an introduction and reports on six research projects.Defense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research University Research Initiative Subcontract N00014-92-J-1893Joint Services Electronics Program Grant DAAH04-95-1-0038National Center for Integrated Photonics Technology Contract 542-381National Science Foundation Grant DMR 92-02957MIT Lincoln Laboratory Contract BX-6085National Center for Integrated Photonics Technology Subcontract 542-383U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0126U.S. Navy - Office of Naval Research Grant N00014-91-J-1956National Science Foundation Grant DMR 94-0033

    Epitaxial Growth and Processing of Compound Semiconductors

    Get PDF
    Contains an introduction and reports on three research projects.MIT Lincoln LaboratoryU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0126National Science Foundation Grant DMR 94-00334Joint Services Electronics Progra
    corecore