36 research outputs found

    Identification of α(1,6)fucosylated proteins differentially expressed in human colorectal cancer

    Get PDF
    <p>Summary</p> <p>Background</p> <p>A universal hallmark of cancer cells is the change in their glycosylation phenotype. One of the most frequent alterations in the normal glycosylation pattern observed during carcinogenesis is the enhancement of α(1,6)linked fucose residues of glycoproteins, due to the up-regulation of the α(1,6)fucosyltransferase activity. Our previous results demonstrated the specific alteration of this enzyme activity and expression in colorectal cancer, suggesting its implication in tumour development and progression.</p> <p>Methods</p> <p>In the current work we combined a LCA-affinity chromatography with SDS-PAGE and mass spectrometry in order to identify α(1,6)fucosylated proteins differentially expressed in colorectal cancer. This strategy allowed the identification of a group of α(1,6)fucosylated proteins candidates to be involved in CRC malignancy.</p> <p>Results</p> <p>The majority of the identified proteins take part in cell signaling and interaction processes as well as in modulation of the immunological response. Likewise, we confirmed the increased expression of GRP94 in colorectal cancer tissue and the significant down-regulation of the IgGFcBP expression in tumour cells.</p> <p>Conclusion</p> <p>All these results validate the importance of <it>core-</it>fucosylated proteins profile analysis to understand the mechanisms which promote cancer onset and progression and to discover new tumour markers or therapeutic targets.</p

    Neural and Synaptic Defects in slytherin, a Zebrafish Model for Human Congenital Disorders of Glycosylation

    Get PDF
    Congenital disorder of glycosylation type IIc (CDG IIc) is characterized by mental retardation, slowed growth and severe immunodeficiency, attributed to the lack of fucosylated glycoproteins. While impaired Notch signaling has been implicated in some aspects of CDG IIc pathogenesis, the molecular and cellular mechanisms remain poorly understood. We have identified a zebrafish mutant slytherin (srn), which harbors a missense point mutation in GDP-mannose 4,6 dehydratase (GMDS), the rate-limiting enzyme in protein fucosylation, including that of Notch. Here we report that some of the mechanisms underlying the neural phenotypes in srn and in CGD IIc are Notch-dependent, while others are Notch-independent. We show, for the first time in a vertebrate in vivo, that defects in protein fucosylation leads to defects in neuronal differentiation, maintenance, axon branching, and synapse formation. Srn is thus a useful and important vertebrate model for human CDG IIc that has provided new insights into the neural phenotypes that are hallmarks of the human disorder and has also highlighted the role of protein fucosylation in neural development

    1, 2-Alpha-L-fucosidase

    No full text

    On the nature of thiamine triphosphate in Arabidopsis

    No full text
    Vitamin B1is a family of molecules, the most renowned member of which is diphosphorylated thiamine (TDP)-a coenzyme vital for the activity of key enzymes of energy metabolism. Triphosphorylated thiamine derivatives also exist within this family, specifically thiamine triphosphate (TTP) and adenosine thiamine triphosphate (ATTP). They have been investigated primarily in mammalian cells and are thought to act as metabolic messengers but have not received much attention in plants. In this study, we set out to examine for the presence of these triphosphorylated thiamine derivatives in Arabidopsis. We could find TTP in Arabidopsis under standard growth conditions, but we could not detect ATTP. Interestingly, TTP is found primarily in shoot tissue. Drivers of TTP synthesis are light intensity, the proton motive force, as well as TDP content. In plants, TTP accumulates in the organellar powerhouses, the plastids, and mitochondria. Furthermore, in contrast to other B1vitamers, there are strong oscillations in tissue levels of TTP levels over diel periods peaking early during the light period. The elevation of TTP levels during the day appears to be coupled to a photosynthesis-driven process. We propose that TTP may signify TDP sufficiency, particularly in the organellar powerhouses, and discuss our findings in relation to its role

    Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells.

    No full text
    Carbohydrate chains on a glycoprotein are important not only for protein conformation, transport and stability, but also for cell-cell and cell-matrix interactions. UDP-Gal:N-acetylglucosamine beta-1,4-galactosyltransferase (GalT) (EC 2.4.1.38) is the enzyme which transfers galactose (Gal) to the terminal N-acetylglucosamine (GlcNAc) of complex-type N-glycans in the Golgi apparatus. In addition, it has also been suggested that this enzyme is involved directly in cell-cell interactions during fertilization and early embryogenesis through a subpopulation of this enzyme distributed on the cell surface. In this study, GalT-deficient mice were produced by gene targeting in order to examine the pathological effects of the deficiency. GalT-deficient mice were born normally and were fertile, but they exhibited growth retardation and semi-lethality. Epithelial cell proliferation of the skin and small intestine was enhanced, and cell differentiation in intestinal villi was abnormal. These observations suggest that GalT plays critical roles in the regulation of proliferation and differentiation of epithelial cells after birth, although this enzyme is dispensable during embryonic development

    Expression, Purification, and Applications of the Recombinant Lectin PVL from Psathyrella velutina Specific for Terminal N-Acetyl-Glucosamine

    No full text
    International audienceThe lectin PVL from the mushroom Psathyrella velutina is the founding member of novel family of fungal lectins. It adopts a seven bladed β-propeller presenting six binding sites specific for the recognition of non-reducing terminal N-acetyl-glucosamine (GlcNAc). The latest can be mainly found in glycoconjugates presenting truncated glycans where aberrant β-GlcNAc terminated glycans represent tumor markers. It can also be found in O-GlcNAcylated proteins where disruption of the O-GlcNAcylation homeostasis is associated with many physiopathological states. The recombinant PVL lectin proved to be a very powerful tool for labelling terminal GlcNAc antigens displayed by extracellular glycoconjugates but also by O-GlcNAcylated proteins found in the cytoplasm and nucleus. This chapter will describe how to produce and purify recombinant PVL and several applications for rPVL as probe for the detection of terminal O-GlcNAc
    corecore