806 research outputs found

    First On-Sky High Contrast Imaging with an Apodizing Phase Plate

    Get PDF
    We present the first astronomical observations obtained with an Apodizing Phase Plate (APP). The plate is designed to suppress the stellar diffraction pattern by 5 magnitudes from 2-9 lambda/D over a 180 degree region. Stellar images were obtained in the M' band (4.85 microns) at the MMTO 6.5m telescope, with adaptive wavefront correction made with a deformable secondary mirror designed for low thermal background observations. The measured PSF shows a halo intensity of 0.1% of the stellar peak at 2 lambda/D (0.36 arcsec), tapering off as r^{-5/3} out to radius 9 lambda/D. Such a profile is consistent with residual errors predicted for servo lag in the AO system. We project a 5 sigma contrast limit, set by residual atmospheric fluctuations, of 10.2 magnitudes at 0.36 arcsec separation for a one hour exposure. This can be realised if static and quasi-static aberrations are removed by differential imaging, and is close to the sensitivity level set by thermal background photon noise for target stars with M'>3. The advantage of using the phase plate is the removal of speckle noise caused by the residuals in the diffraction pattern that remain after PSF subtraction. The APP gives higher sensitivity over the range 2-5 lambda/D compared to direct imaging techniques.Comment: 22 pages, 5 figures, 1 table, ApJ accepte

    Luminescence Dating Without Sand Lenses: an Application of Osl to Coarse-grained Alluvial Fan Deposits of the Lost River Range, Idaho, USA

    Get PDF
    Optically stimulated luminescence (OSL) dating is increasingly used to estimate the age of fluvial deposits. A significant limitation, however, has been that conventional techniques of sampling and dose rate estimation are suitable only for thick (\u3e60 cm) layers consisting of sand size or finer grains. Application of OSL dating to deposits lacking such layers remains a significant challenge. Alluvial fans along the western front of the Lost River Range in east-central Idaho, USA are one example. Deposits are typically pebble to cobble sheetflood gravels with a sandy matrix but thin to absent sand lenses. As a result, the majority of samples for this project were collected by excavating matrix material from gravelly deposits under light-safe tarps or at night. To examine the contributions of different grain-size fractions to calculated dose-rates, multiple grain-size fractions were analyzed using ICP–MS, high resolution gamma spectrometry and XRF. Dose rates from bulk sediment samples were 0.4–40% (mean of 18%) lower than dose-rate estimates from the sand-size fractions alone, illustrating the importance of representative sampling for dose rate determination. We attribute the difference to the low dose-rate contribution from radio-nuclide poor carbonate pebbles and cobbles that occur disproportionately in clast sizes larger than sand. Where possible, dose rates were based on bulk sediment samples since they integrate the dose-rate contribution from all grain sizes. Equivalent dose distributions showed little evidence for partial bleaching. However, many samples had significant kurtosis and/or overdispersion, possibly due to grain-size related microdosimetry effects, accumulation of pedogenic carbonate or post-depositional sediment mixing. Our OSL age estimates range from 4 to 120 ka, preserve stratigraphic and geomorphic order, and show good agreement with independent ages from tephra correlation and U-series dating of pedogenic carbonate. Furthermore, multiple samples from the same deposit produced ages in good agreement. This study demonstrates that with modified sampling methods and careful consideration of the dose rate, OSL dating can be successfully applied to coarse-grained deposits of climatic and tectonic significance that may be difficult to date by other methods

    bRing: An observatory dedicated to monitoring the β\beta Pictoris b Hill sphere transit

    Get PDF
    Aims. We describe the design and first light observations from the β\beta Pictoris b Ring ("bRing") project. The primary goal is to detect photometric variability from the young star β\beta Pictoris due to circumplanetary material surrounding the directly imaged young extrasolar gas giant planet \bpb. Methods. Over a nine month period centred on September 2017, the Hill sphere of the planet will cross in front of the star, providing a unique opportunity to directly probe the circumplanetary environment of a directly imaged planet through photometric and spectroscopic variations. We have built and installed the first of two bRing monitoring stations (one in South Africa and the other in Australia) that will measure the flux of β\beta Pictoris, with a photometric precision of 0.5%0.5\% over 5 minutes. Each station uses two wide field cameras to cover the declination of the star at all elevations. Detection of photometric fluctuations will trigger spectroscopic observations with large aperture telescopes in order to determine the gas and dust composition in a system at the end of the planet-forming era. Results. The first three months of operation demonstrate that bRing can obtain better than 0.5\% photometry on β\beta Pictoris in five minutes and is sensitive to nightly trends enabling the detection of any transiting material within the Hill sphere of the exoplanet

    Data calibration for the MASCARA and bRing instruments

    Get PDF
    Aims: MASCARA and bRing are photometric surveys designed to detect variability caused by exoplanets in stars with mV<8.4m_V < 8.4. Such variability signals are typically small and require an accurate calibration algorithm, tailored to the survey, in order to be detected. This paper presents the methods developed to calibrate the raw photometry of the MASCARA and bRing stations and characterizes the performance of the methods and instruments. Methods: For the primary calibration a modified version of the coarse decorrelation algorithm is used, which corrects for the extinction due to the earth's atmosphere, the camera transmission, and intrapixel variations. Residual trends are removed from the light curves of individual stars using empirical secondary calibration methods. In order to optimize these methods, as well as characterize the performance of the instruments, transit signals were injected in the data. Results: After optimal calibration an RMS scatter of 10 mmag at mV∼7.5m_V \sim 7.5 is achieved in the light curves. By injecting transit signals with periods between one and five days in the MASCARA data obtained by the La Palma station over the course of one year, we demonstrate that MASCARA La Palma is able to recover 84.0, 60.5 and 20.7% of signals with depths of 2, 1 and 0.5% respectively, with a strong dependency on the observed declination, recovering 65.4% of all transit signals at δ>0∘\delta > 0^\circ versus 35.8% at δ<0∘\delta < 0^\circ. Using the full three years of data obtained by MASCARA La Palma to date, similar recovery rates are extended to periods up to ten days. We derive a preliminary occurrence rate for hot Jupiters around A-stars of >0.4%{>} 0.4 \%, knowing that many hot Jupiters are still overlooked. In the era of TESS, MASCARA and bRing will provide an interesting synergy for finding long-period (>13.5{>} 13.5 days) transiting gas-giant planets around the brightest stars.Comment: 18 pages, 17 figures, accepted for publication in A&

    Personal protective equipment solution for UK military medical personnel working in an Ebola virus disease treatment unit in Sierra Leone.

    Get PDF
    The combination of personal protective equipment (PPE) together with donning and doffing protocols was designed to protect British and Canadian military medical personnel in the Kerry Town Ebola Treatment Unit (ETU) in Sierra Leone. The PPE solution was selected to protect medical staff from infectious risks, notably Ebola virus, and chemical (hypochlorite) exposure. PPE maximized dexterity, enabled personnel to work in hot temperatures for periods of up to 2h, protected mucosal membranes when doffing outer layers, and minimized potential contamination of the doffing area with infectious material by reducing the requirement to spray PPE with hypochlorite. The ETU was equipped to allow medical personnel to provide a higher level of care than witnessed in many existing ETUs. This assured personnel working as part of the international response that they would receive as close to Western treatment standards as possible if they were to contract Ebola virus disease (EVD). PPE also enabled clinical interventions that are not seen routinely in West African EVD treatment regimens, whilst providing a robust protective barrier. Competency in using PPE was developed during a nine-day pre-deployment training programme. This allowed over 60 clinical personnel per deployment to practice skills in PPE in a simulated ETU and in classrooms. Overall, the training provided: (i) an evidence base underpinning the PPE solution chosen; (ii) skills in donning and doffing of PPE; (iii) personnel confidence in the selected PPE; and (iv) quantifiable testing of each individual's capability to don PPE, perform tasks and doff PPE safely
    • …
    corecore