45,969 research outputs found

    Strain accommodation through facet matching in La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4}/Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} ramp-edge junctions

    Get PDF
    Scanning nano-focused X-ray diffraction (nXRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} and superconducting hole-doped La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} with a 3.3 degree tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.Comment: 5 pages, 4 figures & 3 pages supplemental information with 2 figures. Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APL Mat. 3, 086101 (2015) and may be found at http://dx.doi.org/10.1063/1.492779

    Sensitivity of Ag/Al Interface Specific Resistances to Interfacial Intermixing

    Full text link
    We have measured an Ag/Al interface specific resistance, 2AR(Ag/Al)(111) = 1.4 fOhm-m^2, that is twice that predicted for a perfect interface, 50% larger than for a 2 ML 50%-50% alloy, and even larger than our newly predicted 1.3 fOhmm^2 for a 4 ML 50%-50% alloy. Such a large value of 2ARAg/Al(111) confirms a predicted sensitivity to interfacial disorder and suggests an interface greater than or equal to 4 ML thick. From our calculations, a predicted anisotropy ratio, 2AR(Ag/Al)(001)/2AR(Ag/Al)(111), of more then 4 for a perfect interface, should be reduced to less than 2 for a 4 ML interface, making it harder to detect any such anisotropy.Comment: 3 pages, 2 figures, 1 table. In Press: Journal of Applied Physic

    Comparative experimental study of local mixing of active and passive scalars in turbulent thermal convection

    Full text link
    We investigate experimentally the statistical properties of active and passive scalar fields in turbulent Rayleigh-B\'{e}nard convection in water, at Ra∼1010Ra\sim10^{10}. Both the local concentration of fluorescence dye and the local temperature are measured near the sidewall of a rectangular cell. It is found that, although they are advected by the same turbulent flow, the two scalars distribute differently. This difference is twofold, i.e. both the quantities themselves and their small-scale increments have different distributions. Our results show that there is a certain buoyant scale based on time domain, i.e. the Bolgiano time scale tBt_B, above which buoyancy effects are significant. Above tBt_B, temperature is active and is found to be more intermittent than concentration, which is passive. This suggests that the active scalar possesses a higher level of intermittency in turbulent thermal convection. It is further found that the mixing of both scalar fields are isotropic for scales larger than tBt_B even though buoyancy acts on the fluid in the vertical direction. Below tBt_B, temperature is passive and is found to be more anisotropic than concentration. But this higher degree of anisotropy is attributed to the higher diffusivity of temperature over that of concentration. From the simultaneous measurements of temperature and concentration, it is shown that two scalars have similar autocorrelation functions and there is a strong and positive correlation between them.Comment: 13 pages and 12 figure

    Ground-state properties of the two-site Hubbard-Holstein model: an exact solution

    Full text link
    We revisit the two-site Hubbard-Holstein model by using extended phonon coherent states. The nontrivial singlet bipolaron is studied exactly in the whole coupling regime. The ground-state (GS) energy and the double occupancy probability are calculated. The linear entropy is exploited successfully to quantify bipartite entanglement between electrons and their environment phonons, displaying a maximum entanglement of the singlet-bipolaron in strong coupling regime. A dramatic drop in the crossover regime is observed in the GS fidelity and its susceptibility. The bipolaron properties is also characterized classically by correlation functions. It is found that the crossover from a two-site to single-site bipolaron is more abrupt and shifts to a larger electron-phonon coupling strength as electron-electron Coulomb repulsion increases.Comment: 6 pages, 6 figure
    • …
    corecore