66 research outputs found

    Safety and protection for large-scale magnet systems - FY88 report

    Get PDF

    О роли библиотековеда, библиографа и литературоведа Алиаждара Саидзаде (1899–1970) в становлении библиотечного дела в Азербайджане

    Get PDF
    The political, economic and cultural aspects of the Soviet era heritage, best pieces of culture, literature, applied and fine arts make the universal human values that bring people together and unite them. We have to study and appreciate the work, role and merits of individuals who play an important role in building and developing cultural environment.Aliajhdar Seyidzade was a progressive intellectual who devoted his life to culture, book and reading popularization, libraries, and extending literary ties in the hard periods during the Soviet era.The authors investigate into Seiydzade’s versatile cultural activities. He lived an interesting life, and being government official himself, did not abandon the national concept and values within the Soviet ideological system. His works, his thoughts and efforts reflect the breadth of his knowledge and widest view of the world. His attitude: “Not in all cases propaganda is an ideology, propaganda must be progressive...” is especially noteworthy.Культурные конструкции советского периода, общие образцы культурного, литературного, прикладного и изобразительного искусства можно рассматривать как ценности, сближающие и объединяющие людей. В связи с этим необходимо изучать наследие личностей, сыгравших важную роль в создании и развитии культурной среды.Алиаждар Саидзаде – представитель прогрессивной интеллигенции, посвятивший свою жизнь культурному строительству, популяризации книги и чтения, библиотечной деятельности, расширению литературных связей в трудные годы советской эпохи. Статья посвящена изучению и оценке его разносторонней культурной деятельности. А. Саидзаде прожил интересную жизнь, способствовал сохранению национальной концепции в советской идеологической системе. Начитанность и мировоззрение отражены в его произведениях, а в действиях и мыслях прослеживается подход «Пропаганда не во всех случаях является идеологией, и пропаганда должна быть прогрессивной...»

    Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comment

    Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q^2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation.</p> <p>Methods</p> <p>UVB-irradiated p53<sup>+/- </sup>mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling.</p> <p>Results</p> <p>UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19<sup>+</sup>, CD5<sup>+</sup>, B220<sup>+</sup>, IgM<sup>+ </sup>and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19) translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression.</p> <p>Conclusion</p> <p>UV-irradiated p53<sup>+/- </sup>mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal tumors after chronic exposure to UV light. The induction of B cell lymphoma in UV-irradiated p53 heterozygous mice may provide a useful model for lymphoma development in humans.</p

    Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 ≤ Q2 ≤ 1.0 GeV2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrom- eter to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments

    Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab

    Full text link
    This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena.Comment: Updates to the list of authors; Preprint number changed from theory to experiment; Updates to sections 4 and 6, including additional figure
    corecore