586 research outputs found

    Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions

    Full text link
    The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck. Centre of foot pressure displacements were recorded using a force platform. Results showed that (1) the Fatigue condition yielded increased CoP displacements relative to the No Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing effect was more accentuated in the Head tilted backward posture than Neutral head posture (Experiment 1) and (3) this destabilizing effect was less accentuated in the condition of Tactile stimulation than that of No tactile stimulation of the neck (Experiment 2). In the context of the multisensory control of balance, these results suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function

    Children grow and horses race: is the adiposity rebound a critical period for later obesity?

    Get PDF
    BACKGROUND: The adiposity rebound is the second rise in body mass index that occurs between 3 and 7 years. An early age at adiposity rebound is known to be a risk factor for later obesity. The aim here is to clarify the connection between the age at rebound and the corresponding pattern of body mass index change, in centile terms, so as to better understand its ability to predict later fatness. DISCUSSION: Longitudinal changes in body mass index during adiposity rebound, measured both in original (kg/m(2)) and standard deviation (SD) score units, are studied in five hypothetical subjects. Two aspects of the body mass index curve, the body mass index centile and the rate of body mass index centile crossing, determine a child's age at rebound. A high centile and upward centile crossing are both associated separately with an early rebound, while a low centile and/or downward centile crossing correspond to a late rebound. Early adiposity rebound is a risk factor for later fatness because it identifies children whose body mass index centile is high and/or crossing upwards. Such children are likely to have a raised body mass index later in childhood and adulthood. This is an example of Peto's "horse racing effect". The association of centile crossing with later obesity is statistical not physiological, and it applies at all ages not just at rebound, so adiposity rebound cannot be considered a critical period for future obesity. Body mass index centile crossing is a more direct indicator of the underlying drive to fatness. SUMMARY: An early age at adiposity rebound predicts later fatness because it identifies children whose body mass index centile is high and/or crossing upwards. Such children are likely to have a raised body mass index later. Body mass index centile crossing is more direct than the timing of adiposity rebound for predicting later fatness

    Trim37-deficient mice recapitulate several features of the multi-organ disorder Mulibrey nanism

    Get PDF
    Mulibrey nanism (MUL) is a rare autosomal recessive multi-organ disorder characterized by severe prenatal-onset growth failure, infertility, cardiopathy, risk for tumors, fatty liver, and type 2 diabetes. MUL is caused by loss-of-function mutations in TRIM37, which encodes an E3 ubiquitin ligase belonging to the tripartite motif (TRIM) protein family and having both peroxisomal and nuclear localization. We describe a congenic Trim37 knock-out mouse (Trim37(-/-)) model for MUL. Trim37(-/-) mice were viable and had normal weight development until approximately 12 months of age, after which they started to manifest increasing problems in wellbeing and weight loss. Assessment of skeletal parameters with computer tomography revealed significantly smaller skull size, but no difference in the lengths of long bones in Trim37(-/-) mice as compared with wildtype. Both male and female Trim37(-/-) mice were infertile, the gonads showing germ cell aplasia, hilus and Leydig cell hyperplasia and accumulation of lipids in and around Leydig cells. Male Trim37(-/-) mice had elevated levels of follicle-stimulating and luteinizing hormones, but maintained normal levels of testosterone. Six-month-old Trim37(-/-) mice had elevated fasting blood glucose and low fasting serum insulin levels. At 1.5 years Trim37(-/-) mice showed non-compaction cardiomyopathy, hepatomegaly, fatty liver and various tumors. The amount and morphology of liver peroxisomes seemed normal in Trim37(-/-) mice. The most consistently seen phenotypes in Trim37(-/-) mice were infertility and the associated hormonal findings, whereas there was more variability in the other phenotypes observed. Trim37(-/-) mice recapitulate several features of the human MUL disease and thus provide a good model to study disease pathogenesis related to TRIM37 deficiency, including infertility, non-alcoholic fatty liver disease, cardiomyopathy and tumorigenesis

    Managing water in rainfed agriculture—The need for a paradigm shift

    Get PDF
    Rainfed agriculture plays and will continue to play a dominant role in providing food and livelihoods for an increasing world population. We describe the world’s semi-arid and dry sub-humid savannah and steppe regions as global hotspots, in terms of water related constraints to food production, high prevalence of malnourishment and poverty, and rapidly increasing food demands. We argue that major water investments in agriculture are required. In these regions yield gaps are large, not due to lack of water per se, but rather due to inefficient management of water, soils, and crops. An assessment of management options indicates that knowledge exists regarding technologies,management systems, and planning methods. A key strategy is to minimise risk for dry spell induced crop failures, which requires an emphasis on water harvesting systems for supplemental irrigation. Large-scale adoption of water harvesting systems will require a paradigm shift in Integrated Water Resource Management (IWRM), in which rainfall is regarded as the entry point for the governance of freshwater, thus incorporating green water resources (sustaining rainfed agriculture and terrestrial ecosystems) and blue water resources (local runoff). The divide between rainfed and irrigated agriculture needs to be reconsidered in favor of a governance, investment, and management paradigm, which considers all water options in agricultural systems. A new focus is needed on the meso-catchment scale, as opposed to the current focus of IWRM on the basin level and the primary focus of agricultural improvements on the farmer’s field. We argue that the catchment scale offers the best opportunities for water investments to build resilience in smallscale agricultural systems and to address trade-offs between water for food and other ecosystem functions and services

    Can a Plantar Pressure-Based Tongue-Placed Electrotactile Biofeedback Improve Postural Control Under Altered Vestibular and Neck Proprioceptive Conditions?

    Full text link
    We investigated the effects of a plantar pressure-based tongue-placed electrotactile biofeedback on postural control during quiet standing under normal and altered vestibular and neck proprioceptive conditions. To achieve this goal, fourteen young healthy adults were asked to stand upright as immobile as possible with their eyes closed in two Neutral and Extended head postures and two conditions of No-biofeedback and Biofeedback. The underlying principle of the biofeedback consisted of providing supplementary information related to foot sole pressure distribution through a wireless embedded tongue-placed tactile output device. Centre of foot pressure (CoP) displacements were recorded using a plantar pressure data acquisition system. Results showed that (1) the Extended head posture yielded increased CoP displacements relative to the Neutral head posture in the No-biofeedback condition, with a greater effect along the anteroposterior than mediolateral axis, whereas (2) no significant difference between the two Neutral and Extended head postures was observed in the Biofeedback condition. The present findings suggested that the availability of the plantar pressure-based tongue-placed electrotactile biofeedback allowed the subjects to suppress the destabilizing effect induced by the disruption of vestibular and neck proprioceptive inputs associated with the head extended posture. These results are discussed according to the sensory re-weighting hypothesis, whereby the central nervous system would dynamically and selectively adjust the relative contributions of sensory inputs (i.e., the sensory weights) to maintain upright stance depending on the sensory contexts and the neuromuscular constraints acting on the subject

    The Quadruple Squeeze: Defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene

    Get PDF
    Humanity has entered a new phase of sustainability challenges, the Anthropocene, in which human development has reached a scale where it affects vital planetary processes. Under the pressure from a quadruple squeeze—from population and development pressures, the anthropogenic climate crisis, the anthropogenic ecosystem crisis, and the risk of deleterious tipping points in the Earth system—the degrees of freedom for sustainable human exploitation of planet Earth are severely restrained. It is in this reality that a new green revolution in world food production needs to occur, to attain food security and human development over the coming decades. Global freshwater resources are, and will increasingly be, a fundamental limiting factor in feeding the world. Current water vulnerabilities in the regions in most need of large agricultural productivity improvements are projected to increase under the pressure from global environmental change. The sustainability challenge for world agriculture has to be set within the new global sustainability context. We present new proposed sustainability criteria for world agriculture, where world food production systems are transformed in order to allow humanity to stay within the safe operating space of planetary boundaries. In order to secure global resilience and thereby raise the chances of planet Earth to remain in the current desired state, conducive for human development on the long-term, these planetary boundaries need to be respected. This calls for a triply green revolution, which not only more than doubles food production in many regions of the world, but which also is environmentally sustainable, and invests in the untapped opportunities to use green water in rainfed agriculture as a key source of future productivity enhancement. To achieve such a global transformation of agriculture, there is a need for more innovative options for water interventions at the landscape scale, accounting for both green and blue water, as well as a new focus on cross-scale interactions, feed-backs and risks for unwanted regime shifts in the agro-ecological landscape

    Predicting growth and curve progression in the individual patient with adolescent idiopathic scoliosis: design of a prospective longitudinal cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scoliosis is present in 3-5% of the children in the adolescent age group, with a higher incidence in females. Treatment of adolescent idiopathic scoliosis is mainly dependent on the progression of the scoliotic curve. There is a close relationship between curve progression and rapid (spinal) growth of the patient during puberty. However, until present time no conclusive method was found for predicting the timing and magnitude of the pubertal growth spurt in total body height, or the curve progression of the idiopathic scoliosis.</p> <p>The goal of this study is to determine the predictive value of several maturity indicators that reflect growth or remaining growth potential, in order to predict timing of the peak growth velocity of total body height in the individual patient with adolescent idiopathic scoliosis. Furthermore, different parameters are evaluated for their correlation with curve progression in the individual scoliosis patient.</p> <p>Methods/design</p> <p>This prospective, longitudinal cohort study will be incorporated in the usual care of patients with adolescent idiopathic scoliosis. All new patients between 8 and 17 years with adolescent idiopathic scoliosis (Cobb angle >10 degrees) visiting the outpatient clinic of the University Medical Center Groningen are included in this study. Follow up will take place every 6 months. The present study will use a new ultra-low dose X-ray system which can make total body X-rays. Several maturity indicators are evaluated like different body length dimensions, secondary sexual characteristics, skeletal age in hand and wrist, skeletal age in the elbow, the Risser sign, the status of the triradiate cartilage, and EMG ratios of the paraspinal muscle activity.</p> <p>Correlations of all dimensions will be calculated in relationship to the timing of the pubertal growth spurt, and to the progression of the scoliotic curve. An algorithm will be made for the optimal treatment strategy in the individual patient with adolescent idiopathic scoliosis.</p> <p>Discussion</p> <p>This study will determine the value of many maturity indicators and will be useful as well for other clinicians treating children with disorders of growth. Since not all clinicians have access to the presented new 3D X-ray system or have the time to make EMG's, for example, all indicators will be correlated to the timing of the peak growth velocity of total body height and curve progression in idiopathic scoliosis. Therefore each clinician can chose which indicators can be used best in their practice.</p> <p>Trial registration number</p> <p>NTR2048</p
    corecore