11 research outputs found

    Risk-neutral densities and their application in the Piterbarg Framework

    Get PDF
    Abstract: In this paper we consider two well-known interpolation schemes for the construction of the JSE Shareholder Weighted Top 40 implied volatility surface. We extend the Breeden and Litzenberger formula to the derivative pricing framework developed by Piterbarg post the 2007 financial crisis. Our results show that the statistical moments of the constructed risk-neutral densities are highly dependent on the choice of interpolation scheme. We show how the risk-neutral denity surface can be used to price options and briefly describe how the statistical moments can be used to inform trading strategies

    Arbitrage-free SVI volatility surfaces

    No full text

    Arbitrage-free smoothing of the implied volatility surface

    No full text
    The pricing accuracy and pricing performance of local volatility models depends on the absence of arbitrage in the implied volatility surface. An input implied volatility surface that is not arbitrage-free can result in negative transition probabilities and consequently mispricings and false greeks. We propose an approach for smoothing the implied volatility smile in an arbitrage-free way. The method is simple to implement, computationally cheap and builds on the well-founded theory of natural smoothing splines under suitable shape constraints.Implied volatility surface, Local volatility, Cubic spline smoothing, No-arbitrage constraints,
    corecore