8,091 research outputs found

    Market Power in Non-Metro Banking

    Get PDF
    Banks in non-metropolitan areas compete in a spatially-differentiated environment. This paper estimates a structural model of the supply and demand of banking services in which pricing power depends on the distance between rival banks. A spatial econometric model finds that approximately 38.0% of economic surplus derives from spatial market power.Financial Economics,

    Profitability and Long-term Survival of Community Banks: Evidence from Texas

    Get PDF
    This study examines the impact of distance among competing bank locations on market their pricing behavior. A general spatial autoregressive model that nests both spatial autoregressive and spatial error models is used to examine the impact of distance on pricing behavior of 686 non-metro banks in Texas. Results show that non-metro banks exercise market power in pricing their products. An increase in spatial competition may reduce profitability and challenge long term survival of small community based financial institutions.Financial Economics,

    Enhanced Dimer Relaxation in an Atomic/Molecular BEC

    Full text link
    We derive a universal formula for the rate constant \beta for relaxation of a shallow dimer into deeply-bound diatomic molecules in the case of atoms with a large scattering length a. We show that \beta is determined by a and by two 3-body parameters that also determine the binding energies and widths of Efimov states. The rate constant \beta scales like \hbar a/m near the resonance, but the coefficient is a periodic function of ln(a) that may have resonant enhancement at values of a that differ by multiples of 22.7.Comment: 5 pages, revtex4, 2 PS figures, title changed, final versio

    Universal low-energy properties of three two-dimensional particles

    Get PDF
    Universal low-energy properties are studied for three identical bosons confined in two dimensions. The short-range pair-wise interaction in the low-energy limit is described by means of the boundary condition model. The wave function is expanded in a set of eigenfunctions on the hypersphere and the system of hyper-radial equations is used to obtain analytical and numerical results. Within the framework of this method, exact analytical expressions are derived for the eigenpotentials and the coupling terms of hyper-radial equations. The derivation of the coupling terms is generally applicable to a variety of three-body problems provided the interaction is described by the boundary condition model. The asymptotic form of the total wave function at a small and a large hyper-radius ρ\rho is studied and the universal logarithmic dependence ∌ln⁥3ρ\sim \ln^3 \rho in the vicinity of the triple-collision point is derived. Precise three-body binding energies and the 2+12 + 1 scattering length are calculated.Comment: 30 pages with 13 figure

    Finite temperature correlations and density profiles of an inhomogeneous interacting 1D Bose gas

    Get PDF
    We calculate the density profiles and density correlation functions of the one-dimensional Bose gas in a harmonic trap, using the exact finite-temperature solutions for the uniform case, and applying a local density approximation. The results are valid for a trapping potential which is slowly varying relative to a correlation length. They allow a direct experimental test of the transition from the weak coupling Gross-Pitaevskii regime to the strong coupling, 'fermionic' Tonks-Girardeau regime. We also calculate the average two-particle correlation which characterizes the bulk properties of the sample, and find that it can be well approximated by the value of the local pair correlation in the trap center.Comment: Final published version; updated references; 19 pages, 12 figure
    • 

    corecore