617 research outputs found

    Interactions Screenings Unearth Potential New Divisome Components in the Chlamydia-Related Bacterium, Waddlia chondrophila.

    Get PDF
    Chlamydiales order members are obligate intracellular bacteria, dividing by binary fission. However, Chlamydiales lack the otherwise conserved homologue of the bacterial division organizer FtsZ and certain division protein homologues. FtsZ might be functionally replaced in Chlamydiales by the actin homologue MreB. RodZ, the membrane anchor of MreB, localizes early at the division septum. In order to better characterize the organization of the chlamydial divisome, we performed co-immunoprecipitations and yeast-two hybrid assays to study the interactome of RodZ, using Waddlia chondrophila, a potentially pathogenic Chlamydia-related bacterium, as a model organism. Three potential interactors were further investigated: SecA, FtsH, and SufD. The gene and protein expression profiles of these three genes were measured and are comparable with recently described division proteins. Moreover, SecA, FtsH, and SufD all showed a peripheral localization, consistent with putative inner membrane localization and interaction with RodZ. Notably, heterologous overexpression of the abovementioned proteins could not complement E. coli mutants, indicating that these proteins might play different functions in these two bacteria or that important regulators are not conserved. Altogether, this study brings new insights to the composition of the chlamydial divisome and points to links between protein secretion, degradation, iron homeostasis, and chlamydial division

    Disassembly of a Medial Transenvelope Structure by Antibiotics during Intracellular Division.

    Get PDF
    Chlamydiales possess a minimal but functional peptidoglycan precursor biosynthetic and remodeling pathway involved in the assembly of the division septum by an atypical cytokinetic machine and cryptic or modified peptidoglycan-like structure (PGLS). How this reduced cytokinetic machine collectively coordinates the invagination of the envelope has not yet been explored in Chlamydiales. In other Gram-negative bacteria, peptidoglycan provides anchor points that connect the outer membrane to the peptidoglycan during constriction using the Pal-Tol complex. Purifying PGLS and associated proteins from the chlamydial pathogen Waddlia chondrophila, we unearthed the Pal protein as a peptidoglycan-binding protein that localizes to the chlamydial division septum along with other components of the Pal-Tol complex. Together, our PGLS characterization and peptidoglycan-binding assays support the notion that diaminopimelic acid is an important determinant recruiting Pal to the division plane to coordinate the invagination of all envelope layers with the conserved Pal-Tol complex, even during osmotically protected intracellular growth

    Homogeneous and heterogeneous nucleation in the three--state Blume--Capel model

    Full text link
    The metastable behavior of the stochastic Blume--Capel model with Glauber dynamics is studied when zero-boundary conditions are considered. The presence of zero-boundary conditions changes drastically the metastability scenarios of the model: \emph{heterogeneous nucleation} will be proven in the region of the parameter space where the chemical potential is larger than the external magnetic field.Comment: 25 pages, 18 figure

    Diverse Stress-Inducing Treatments cause Distinct Aberrant Body Morphologies in the Chlamydia-Related Bacterium, Waddlia chondrophila.

    Get PDF
    Chlamydiae, such as Chlamydia trachomatis and Chlamydia pneumoniae, can cause chronic infections. It is believed that persistent forms called aberrant bodies (ABs) might be involved in this process. AB formation seems to be a common trait of all members of the Chlamydiales order and is caused by distinct stress stimuli, such as β-lactam antibiotics or nutrient starvation. While the diverse stimuli inducing ABs are well described, no comprehensive morphological characterization has been performed in Chlamydiales up to now. We thus infected mammalian cells with the Chlamydia-related bacterium Waddlia chondrophila and induced AB formation using different stimuli. Their morphology, differences in DNA content and in gene expression were assessed by immunofluorescence, quantitative PCR, and reverse transcription PCR, respectively. All stimuli induced AB formation. Interestingly, we show here for the first time that the DNA gyrase inhibitor novobiocin also caused appearance of ABs. Two distinct patterns of ABs could be defined, according to their morphology and number: (i) small and multiple ABs versus (ii) large and rare ABs. DNA replication of W. chondrophila was generally not affected by the different treatments. Finally, no correlation could be observed between specific types of ABs and expression patterns of mreB and rodZ genes

    FtsZ-independent septal recruitment and function of cell wall remodelling enzymes in chlamydial pathogens.

    Get PDF
    The nature and assembly of the chlamydial division septum is poorly defined due to the paucity of a detectable peptidoglycan (PG)-based cell wall, the inhibition of constriction by penicillin and the presence of coding sequences for cell wall precursor and remodelling enzymes in the reduced chlamydial (pan-)genome. Here we show that the chlamydial amidase (AmiA) is active and remodels PG in Escherichia coli. Moreover, forward genetics using an E. coli amidase mutant as entry point reveals that the chlamydial LysM-domain protein NlpD is active in an E. coli reporter strain for PG endopeptidase activity (ΔnlpI). Immunolocalization unveils NlpD as the first septal (cell-wall-binding) protein in Chlamydiae and we show that its septal sequestration depends on prior cell wall synthesis. Since AmiA assembles into peripheral clusters, trimming of a PG-like polymer or precursors occurs throughout the chlamydial envelope, while NlpD targets PG-like peptide crosslinks at the chlamydial septum during constriction

    The antimicrobial peptide TAT-RasGAP<sub>317-326</sub> inhibits the formation and expansion of bacterial biofilms in vitro.

    Get PDF
    Biofilms are structured aggregates of bacteria embedded in a self-produced matrix that develop in diverse ecological niches. Pathogenic bacteria can form biofilms on surfaces and in tissues, causing nosocomial and chronic infections that are difficult to treat. While antibiotics are largely inefficient in limiting biofilm formation and expansion, antimicrobial peptides (AMPs) are emerging as alternative antibiofilm treatments. In this study, we explore the effect of the newly described AMP TAT-RasGAP &lt;sub&gt;317-326&lt;/sub&gt; on Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Efficiency of TAT-RasGAP &lt;sub&gt;317-326&lt;/sub&gt; on biofilms was tested in vitro. Both viability of bacteria contained in the biofilm as well as biomass of the biofilm were quantified using resazurin and crystal violet staining, respectively. The antibiofilm effect of TAT-RasGAP &lt;sub&gt;317-326&lt;/sub&gt; was compared with a selection of classical antibiotics and AMPs. We observe that TAT-RasGAP &lt;sub&gt;317-326&lt;/sub&gt; inhibits biofilm formation at concentrations equivalent or two times greater than the minimum inhibitory concentration (MIC) of planktonic bacteria. Moreover, TAT-RasGAP &lt;sub&gt;317-326&lt;/sub&gt; limits the expansion of A. baumannii and P. aeruginosa established biofilms at twice the concentration inhibiting biofilm formation. These results underscore the potential use of TAT-RasGAP &lt;sub&gt;317-326&lt;/sub&gt; against biofilms and encourage further studies in the development of AMPs to treat biofilm-related infections

    Cedratvirus lausannensis - digging into Pithoviridae diversity.

    Get PDF
    Amoeba-infecting viruses have raised scientists' interest due to their novel particle morphologies, their large genome size and their genomic content challenging previously established dogma. We report here the discovery and the characterization of Cedratvirus lausannensis, a novel member of the Megavirales, with a 0.75-1 µm long amphora-shaped particle closed by two striped plugs. Among numerous host cell types tested, the virus replicates only in Acanthamoeba castellanii leading to host cell lysis within 24 h. C. lausannensis was resistant to ethanol, hydrogen peroxide and heating treatments. Like 30 000-year-old Pithovirus sibericum, C. lausannensis enters by phagocytosis, releases its genetic content by fusion of the internal membrane with the inclusion membrane and replicates in intracytoplasmic viral factories. The genome encodes 643 proteins that confirmed the grouping of C. lausannensis with Cedratvirus A11 as phylogenetically distant members of the family Pithoviridae. The 575,161 bp AT-rich genome is essentially devoid of the numerous repeats harbored by Pithovirus, suggesting that these non-coding repetitions might be due to a selfish element rather than particular characteristics of the Pithoviridae family. The discovery of C. lausannensis confirms the contemporary worldwide distribution of Pithoviridae members and the characterization of its genome paves the way to better understand their evolution

    Cell wall precursors are required to organize the chlamydial division septum.

    Get PDF
    Members of the Chlamydiales order are major bacterial pathogens that divide at mid-cell, without a sequence homologue of the FtsZ cytokinetic tubulin and without a classical peptidoglycan cell wall. Moreover, the spatiotemporal mechanisms directing constriction in Chlamydia are not known. Here we show that the MreB actin homologue and its conserved regulator RodZ localize to the division furrow in Waddlia chondrophila, a member of the Chlamydiales order implicated in human miscarriage. RodZ is recruited to the septal site earlier than MreB and in a manner that depends on biosynthesis of the peptidoglycan precursor lipid II by the MurA enzyme. By contrast, crosslinking of lipid II peptides by the Pbp3 transpeptidase disperses RodZ from the septum. Altogether, these findings provide a cytological framework for understanding chlamydial cytokinesis driven by septal cell wall synthesis

    Comparative genomics of Neisseria meningitidis strains: new targets for molecular diagnostics.

    Get PDF
    In 2010, Jaton et al. (False-negative PCR result due to gene polymorphism: the example of Neisseria meningitidis. J Clin Microbiol 2010;48:4590-2) reported an isolate of Neisseria meningitidis serogroup B that was not detected by the ctrA quantitative real-time PCR (qRT-PCR) used in our diagnostic laboratory. Sequence analysis of ctrA revealed several single nucleotide polymorphisms responsible for the negative qRT-PCR. Therefore, we sequenced the genome of this isolate and performed comparative genomics to propose new gene targets for the specific detection of N. meningitidis from clinical specimens. We identified 11 genes as specific to N. meningitidis genomes and common to at least 177 (97%) of the 183 genomes available. Among them, three genes (metA, tauE and shlA) were selected to develop new qRT-PCRs for the detection of N. meningitidis DNA. The three qRT-PCRs were highly sensitive and specific, and they exhibited a good reproducibility when tested on plasmidic positive controls and genomic DNA extracted from strains of N. meningitidis and other relevant bacterial species. The clinical sensitivity and specificity of metA and tauE qRT-PCRs were both 100% based on a testing of cerebrospinal fluid samples positive for N. meningitidis or other clinically relevant bacteria. Despite a 100% specificity, the sensitivity of the shlA qRT-PCR was only 70%. We thus recommend using the metA and/or tauE qRT-PCRs developed here. To prevent PCR failure in the presence of new polymorphic strains, the detection of dual targets by duplex qRT-PCR would be more accurate and suitable for the diagnosis of N. meningitidis from clinical specimens

    The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly.

    Get PDF
    Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections
    corecore