13,287 research outputs found
A Non-Centrosymmetric Superconductor with a Bulk 3D Dirac Cone Gapped by Strong Spin Orbit Coupling
Layered, non-centrosymmetric, heavy element PbTaSe2 is found to be
superconducting. We report its electronic properties accompanied by electronic
structure calculations. Specific heat, electrical resistivity and magnetic
susceptibility measurements indicate that PbTaSe2 is a moderately coupled,
type-II BCS superconductor (Tc = 3.72 K, Ginzburg-Landau parameter Kappa = 14)
with an electronphonon coupling constant of Lambda_ep = 0.74. Electronic
structure calculations reveal a single bulk 3D Dirac cone at the K point of the
Brillouin Zone derived exclusively from its hexagonal Pb layer; it is similar
to the feature found in graphene except there is a 0.8 eV gap opened by
spin-orbit coupling. The combination of large spin-orbit coupling and lack of
inversion symmetry also results in large Rashba splitting on the order of
tenths of eV
Working Group 5: Measurements technology and active experiments
Technology issues identified by working groups 5 are listed. (1) New instruments are needed to upgrade the ability to measure plasma properties in space. (2) Facilities should be developed for conducting a broad range of plasma experiments in space. (3) The ability to predict plasma weather within magnetospheres should be improved and a capability to modify plasma weather developed. (4) Methods of control of plasma spacecraft and spacecraft plasma interference should be upgraded. (5) The space station laboratory facilities should be designed with attention to problems of flexibility to allow for future growth. These issues are discussed
Recommended from our members
Adapting the International System of Units to the twenty-first century
We review the proposal of the International Committee for Weights and Measures
(Comité International des Poids et Mesures, CIPM), currently being considered by
the General Conference on Weights and Measures (Conférences Générales des Poids et
Mesures, CGPM), to revise the International System of Units (Le Système International
d’Unitès, SI). The proposal includes new definitions for four of the seven base units of
the SI, and a new form of words to present the definitions of all the units. The objective
of the proposed changes is to adopt definitions referenced to constants of nature, taken
in the widest sense, so that the definitions may be based on what are believed to be
true invariants. In particular, whereas in the current SI the kilogram, ampere, kelvin and
mole are linked to exact numerical values of the mass of the international prototype of the
kilogram, the magnetic constant (permeability of vacuum), the triple-point temperature
of water and the molar mass of carbon-12, respectively, in the new SI these units are linked
to exact numerical values of the Planck constant, the elementary charge, the Boltzmann
constant and the Avogadro constant, respectively. The new wording used expresses the
definitions in a simple and unambiguous manner without the need for the distinction
between base and derived units. The importance of relations among the fundamental
constants to the definitions, and the importance of establishing a mise en pratique for
the realization of each definition, are also discussed
The (In)Stability of Planetary Systems
We present results of numerical simulations which examine the dynamical
stability of known planetary systems, a star with two or more planets. First we
vary the initial conditions of each system based on observational data. We then
determine regions of phase space which produce stable planetary configurations.
For each system we perform 1000 ~1 million year integrations. We examine
upsilon And, HD83443, GJ876, HD82943, 47UMa, HD168443, and the solar system
(SS). We find that the resonant systems, 2 planets in a first order mean motion
resonance, (HD82943 and GJ876) have very narrow zones of stability. The
interacting systems, not in first order resonance, but able to perturb each
other (upsilon And, 47UMa, and SS) have broad regions of stability. The
separated systems, 2 planets beyond 10:1 resonance, (we only examine HD83443
and HD168443) are fully stable. Furthermore we find that the best fits to the
interacting and resonant systems place them very close to unstable regions. The
boundary in phase space between stability and instability depends strongly on
the eccentricities, and (if applicable) the proximity of the system to perfect
resonance. In addition to million year integrations, we also examined stability
on ~100 million year timescales. For each system we ran ~10 long term
simulations, and find that the Keplerian fits to these systems all contain
configurations which may be regular on this timescale.Comment: 37 pages, 49 figures, 13 tables, submitted to Ap
Cd3As2 is Centrosymmetric
This is a revised version of a manuscript that was originally posted here in
February of 2014. It has been accepted at the journal Inorganic Chemistry after
reviews that included those of two crystallographers who made sure all the t's
were crossed and the i's were dotted. The old work (from 1968) that said that
Cd3As2 was noncentrosymmetric was mistaken, with the authors of that study
making a type of error that in the 1980s became infamous in crystallography. As
a result of the increased scrutiny of the issue of centrosymmetricity of the
1980's, there are now much better analysis tools to resolve the issue fully,
and its important to understand that not just our crystals are centrosymmetric,
even the old guy's crystals were centrosymmetric (and by implication everyone's
are). There is no shame in having made that error back in the day and those
authors would not find the current centrosymmetric result controversial; their
paper is excellent in all other aspects. This manuscript describes how the
structure is determined, explains the structure schematically, calculates the
electronic structure based on the correct centrosymmetric crystal structure,
and gives the structural details that should be used for future analysis and
modeling.Comment: Accepted by ACS Inorganic Chemistr
Correlation of Crystal Quality and Extreme Magnetoresistance of WTe
High quality single crystals of WTe were grown using a Te flux followed
by a cleaning step involving self-vapor transport. The method is reproducible
and yields consistently higher quality single crystals than are typically
obtained via halide assisted vapor transport methods. Magnetoresistance
(MR)values at 9 Tesla and 2 Kelvin as high as 1.75 million \%, nearly an order
of magnitude higher than previously reported for this material, were obtained
on crystals with residual resistivity ratio (RRR) of approximately 1250. The MR
follows a near B law (B = 1.95(1)) and, assuming a semiclassical model, the
average carrier mobility for the highest quality crystal was found to be
~167,000 cm/Vs at 2 K. A correlation of RRR, MR ratio and average carrier
mobility () is found with the cooling rate during the flux growth.Comment: 7 pages, 3 figures, 1 tabl
Evidence for massive bulk Dirac Fermions in PbSnSe from Nernst and thermopower experiments
The lead chalcogenides (Pb,Sn)Te and (Pb,Sn)Se are the first examples of
topological crystalline insulators (TCI) predicted \cite{Fu,Hsieh} (and
confirmed \cite{Hasan,Story,Takahashi}) to display topological surface Dirac
states (SDS) that are protected by mirror symmetry. A starting premise
\cite{Hsieh} is that the SDS arise from bulk states describable as massive
Dirac states \cite{Wallis,Svane}, but this assumption is untested. Here we show
that the thermoelectric response of the bulk states display features specific
to the Dirac spectrum. We show that, in the quantum limit, the lowest Landau
Level (LL) is singly spin-degenerate, whereas higher levels are doubly
degenerate. The abrupt change in spin degeneracy leads to a large step-decrease
in the thermopower . In the lowest LL, displays a striking
linear increase vs. magnetic field. In addition, the Nernst signal undergoes an
anomalous sign change when the bulk gap inverts at 180 K.Comment: 16 pages, 8 figure
- …