263 research outputs found

    Exact sampling from non-attractive distributions using summary states

    Full text link
    Propp and Wilson's method of coupling from the past allows one to efficiently generate exact samples from attractive statistical distributions (e.g., the ferromagnetic Ising model). This method may be generalized to non-attractive distributions by the use of summary states, as first described by Huber. Using this method, we present exact samples from a frustrated antiferromagnetic triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss the advantages and limitations of the method of summary states for practical sampling, paying particular attention to the slowing down of the algorithm at low temperature. In particular, we show that such a slowing down can occur in the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at http://wol.ra.phy.cam.ac.uk/mackay/exac

    Dynamic Critical Behavior of the Chayes-Machta Algorithm for the Random-Cluster Model. I. Two Dimensions

    Full text link
    We study, via Monte Carlo simulation, the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts ferromagnet to non-integer q \ge 1. We consider spatial dimension d=2 and 1.25 \le q \le 4 in steps of 0.25, on lattices up to 1024^2, and obtain estimates for the dynamic critical exponent z_{CM}. We present evidence that when 1 \le q \lesssim 1.95 the Ossola-Sokal conjecture z_{CM} \ge \beta/\nu is violated, though we also present plausible fits compatible with this conjecture. We show that the Li-Sokal bound z_{CM} \ge \alpha/\nu is close to being sharp over the entire range 1 \le q \le 4, but is probably non-sharp by a power. As a byproduct of our work, we also obtain evidence concerning the corrections to scaling in static observables.Comment: LaTeX2e, 75 pages including 26 Postscript figure

    Dynamic Critical Behavior of the Swendsen-Wang Algorithm: The Two-Dimensional 3-State Potts Model Revisited

    Get PDF
    We have performed a high-precision Monte Carlo study of the dynamic critical behavior of the Swendsen-Wang algorithm for the two-dimensional 3-state Potts model. We find that the Li-Sokal bound (τint,Econst×CH\tau_{int,E} \geq const \times C_H) is almost but not quite sharp. The ratio τint,E/CH\tau_{int,E} / C_H seems to diverge either as a small power (0.08\approx 0.08) or as a logarithm.Comment: 35 pages including 3 figures. Self-unpacking file containing the LaTeX file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and eqsection.sty) and the 3 Postscript figures. Revised version fixes a normalization error in \xi (with many thanks to Wolfhard Janke for finding the error!). To be published in J. Stat. Phys. 87, no. 1/2 (April 1997

    Percolation properties of the 2D Heisenberg model

    Get PDF
    We analyze the percolation properties of certain clusters defined on configurations of the 2--dimensional Heisenberg model. We find that, given any direction \vec{n} in O(3) space, the spins almost perpendicular to \vec{n} form a percolating cluster. This result gives indications of how the model can avoid a previously conjectured Kosterlitz-Thouless phase transition at finite temperature T.Comment: 4 pages, 3 eps figures. Revised version (more clear abstract, some new references

    Crossover from Isotropic to Directed Percolation

    Full text link
    Directed percolation is one of the generic universality classes for dynamic processes. We study the crossover from isotropic to directed percolation by representing the combined problem as a random cluster model, with a parameter rr controlling the spontaneous birth of new forest fires. We obtain the exact crossover exponent yDP=yT1y_{DP}=y_T-1 at r=1r=1 using Coulomb gas methods in 2D. Isotropic percolation is stable, as is confirmed by numerical finite-size scaling results. For D3D \geq 3, the stability seems to change. An intuitive argument, however, suggests that directed percolation at r=0r=0 is unstable and that the scaling properties of forest fires at intermediate values of rr are in the same universality class as isotropic percolation, not only in 2D, but in all dimensions.Comment: 4 pages, REVTeX, 4 epsf-emedded postscript figure

    The Thermodynamics of Quarks and Gluons

    Full text link
    This is an introduction to the study of strongly interacting matter. We survey its different possible states and discuss the transition from hadronic matter to a plasma of deconfined quarks and gluons. Following this, we summarize the results provided by lattice QCD finite temperature and density, and then investigate the nature of the deconfinement transition. Finally we give a schematic overview of possible ways to study the properties of the quark-gluon plasma.Comment: 19 pages, 21 figures; lecture given at the QGP Winter School, Jaipur/India, Feb.1-3, 2008; to appear in Springer Lecture Notes in Physic

    Mean Field Behavior of Cluster Dynamics

    Full text link
    The dynamic behavior of cluster algorithms is analyzed in the classical mean field limit. Rigorous analytical results below TcT_c establish that the dynamic exponent has the value zsw=1z_{sw}=1 for the Swendsen-Wang algorithm and zuw=0z_{uw}=0 for the Wolff algorithm. An efficient Monte Carlo implementation is introduced, adapted for using these algorithms for fully connected graphs. Extensive simulations both above and below TcT_c demonstrate scaling and evaluate the finite-size scaling function by means of a rather impressive collapse of the data.Comment: Revtex, 9 pages with 7 figure

    Ground State Entropy of Potts Antiferromagnets: Bounds, Series, and Monte Carlo Measurements

    Full text link
    We report several results concerning W(Λ,q)=exp(S0/kB)W(\Lambda,q)=\exp(S_0/k_B), the exponent of the ground state entropy of the Potts antiferromagnet on a lattice Λ\Lambda. First, we improve our previous rigorous lower bound on W(hc,q)W(hc,q) for the honeycomb (hc) lattice and find that it is extremely accurate; it agrees to the first eleven terms with the large-qq series for W(hc,q)W(hc,q). Second, we investigate the heteropolygonal Archimedean 4824 \cdot 8^2 lattice, derive a rigorous lower bound, on W(482,q)W(4 \cdot 8^2,q), and calculate the large-qq series for this function to O(y12)O(y^{12}) where y=1/(q1)y=1/(q-1). Remarkably, these agree exactly to all thirteen terms calculated. We also report Monte Carlo measurements, and find that these are very close to our lower bound and series. Third, we study the effect of non-nearest-neighbor couplings, focusing on the square lattice with next-nearest-neighbor bonds.Comment: 13 pages, Latex, to appear in Phys. Rev.

    Inhomogeneity-induced second-order phase transitions in Potts model on hierarchical lattices

    Full text link
    The thermodynamics of the qq-state Potts model with arbitrary qq on a class of hierarchical lattices is considered. Contrary to the case of the crystal lattices, it has always the second-order phase transitions. The analytical expressions fo the critical indexes are obtained, their dependencies on the structural lattice pararmeters are studied and the scailing relations among them are establised. The structural criterion of the inhomogeneity-induced transformation of the transition order is suggested. The application of the results to a description of critical phenomena in the dilute crystals and substances confined in porous media is discussed.Comment: 9 pages, 2 figure

    Families of Graphs with W_r({G},q) Functions That Are Nonanalytic at 1/q=0

    Full text link
    Denoting P(G,q)P(G,q) as the chromatic polynomial for coloring an nn-vertex graph GG with qq colors, and considering the limiting function W({G},q)=limnP(G,q)1/nW(\{G\},q) = \lim_{n \to \infty}P(G,q)^{1/n}, a fundamental question in graph theory is the following: is Wr({G},q)=q1W({G},q)W_r(\{G\},q) = q^{-1}W(\{G\},q) analytic or not at the origin of the 1/q1/q plane? (where the complex generalization of qq is assumed). This question is also relevant in statistical mechanics because W({G},q)=exp(S0/kB)W(\{G\},q)=\exp(S_0/k_B), where S0S_0 is the ground state entropy of the qq-state Potts antiferromagnet on the lattice graph {G}\{G\}, and the analyticity of Wr({G},q)W_r(\{G\},q) at 1/q=01/q=0 is necessary for the large-qq series expansions of Wr({G},q)W_r(\{G\},q). Although WrW_r is analytic at 1/q=01/q=0 for many {G}\{G\}, there are some {G}\{G\} for which it is not; for these, WrW_r has no large-qq series expansion. It is important to understand the reason for this nonanalyticity. Here we give a general condition that determines whether or not a particular Wr({G},q)W_r(\{G\},q) is analytic at 1/q=01/q=0 and explains the nonanalyticity where it occurs. We also construct infinite families of graphs with WrW_r functions that are non-analytic at 1/q=01/q=0 and investigate the properties of these functions. Our results are consistent with the conjecture that a sufficient condition for Wr({G},q)W_r(\{G\},q) to be analytic at 1/q=01/q=0 is that {G}\{G\} is a regular lattice graph Λ\Lambda. (This is known not to be a necessary condition).Comment: 22 pages, Revtex, 4 encapsulated postscript figures, to appear in Phys. Rev.
    corecore