263 research outputs found
Exact sampling from non-attractive distributions using summary states
Propp and Wilson's method of coupling from the past allows one to efficiently
generate exact samples from attractive statistical distributions (e.g., the
ferromagnetic Ising model). This method may be generalized to non-attractive
distributions by the use of summary states, as first described by Huber. Using
this method, we present exact samples from a frustrated antiferromagnetic
triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss
the advantages and limitations of the method of summary states for practical
sampling, paying particular attention to the slowing down of the algorithm at
low temperature. In particular, we show that such a slowing down can occur in
the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at
http://wol.ra.phy.cam.ac.uk/mackay/exac
Dynamic Critical Behavior of the Chayes-Machta Algorithm for the Random-Cluster Model. I. Two Dimensions
We study, via Monte Carlo simulation, the dynamic critical behavior of the
Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which
generalizes the Swendsen-Wang dynamics for the q-state Potts ferromagnet to
non-integer q \ge 1. We consider spatial dimension d=2 and 1.25 \le q \le 4 in
steps of 0.25, on lattices up to 1024^2, and obtain estimates for the dynamic
critical exponent z_{CM}. We present evidence that when 1 \le q \lesssim 1.95
the Ossola-Sokal conjecture z_{CM} \ge \beta/\nu is violated, though we also
present plausible fits compatible with this conjecture. We show that the
Li-Sokal bound z_{CM} \ge \alpha/\nu is close to being sharp over the entire
range 1 \le q \le 4, but is probably non-sharp by a power. As a byproduct of
our work, we also obtain evidence concerning the corrections to scaling in
static observables.Comment: LaTeX2e, 75 pages including 26 Postscript figure
Dynamic Critical Behavior of the Swendsen-Wang Algorithm: The Two-Dimensional 3-State Potts Model Revisited
We have performed a high-precision Monte Carlo study of the dynamic critical
behavior of the Swendsen-Wang algorithm for the two-dimensional 3-state Potts
model. We find that the Li-Sokal bound ()
is almost but not quite sharp. The ratio seems to diverge
either as a small power () or as a logarithm.Comment: 35 pages including 3 figures. Self-unpacking file containing the
LaTeX file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and
eqsection.sty) and the 3 Postscript figures. Revised version fixes a
normalization error in \xi (with many thanks to Wolfhard Janke for finding
the error!). To be published in J. Stat. Phys. 87, no. 1/2 (April 1997
Percolation properties of the 2D Heisenberg model
We analyze the percolation properties of certain clusters defined on
configurations of the 2--dimensional Heisenberg model. We find that, given any
direction \vec{n} in O(3) space, the spins almost perpendicular to \vec{n} form
a percolating cluster. This result gives indications of how the model can avoid
a previously conjectured Kosterlitz-Thouless phase transition at finite
temperature T.Comment: 4 pages, 3 eps figures. Revised version (more clear abstract, some
new references
Crossover from Isotropic to Directed Percolation
Directed percolation is one of the generic universality classes for dynamic
processes. We study the crossover from isotropic to directed percolation by
representing the combined problem as a random cluster model, with a parameter
controlling the spontaneous birth of new forest fires. We obtain the exact
crossover exponent at using Coulomb gas methods in 2D.
Isotropic percolation is stable, as is confirmed by numerical finite-size
scaling results. For , the stability seems to change. An intuitive
argument, however, suggests that directed percolation at is unstable and
that the scaling properties of forest fires at intermediate values of are
in the same universality class as isotropic percolation, not only in 2D, but in
all dimensions.Comment: 4 pages, REVTeX, 4 epsf-emedded postscript figure
The Thermodynamics of Quarks and Gluons
This is an introduction to the study of strongly interacting matter. We
survey its different possible states and discuss the transition from hadronic
matter to a plasma of deconfined quarks and gluons. Following this, we
summarize the results provided by lattice QCD finite temperature and density,
and then investigate the nature of the deconfinement transition. Finally we
give a schematic overview of possible ways to study the properties of the
quark-gluon plasma.Comment: 19 pages, 21 figures; lecture given at the QGP Winter School,
Jaipur/India, Feb.1-3, 2008; to appear in Springer Lecture Notes in Physic
Mean Field Behavior of Cluster Dynamics
The dynamic behavior of cluster algorithms is analyzed in the classical mean
field limit. Rigorous analytical results below establish that the dynamic
exponent has the value for the Swendsen-Wang algorithm and
for the Wolff algorithm.
An efficient Monte Carlo implementation is introduced, adapted for using
these algorithms for fully connected graphs. Extensive simulations both above
and below demonstrate scaling and evaluate the finite-size scaling
function by means of a rather impressive collapse of the data.Comment: Revtex, 9 pages with 7 figure
Ground State Entropy of Potts Antiferromagnets: Bounds, Series, and Monte Carlo Measurements
We report several results concerning , the
exponent of the ground state entropy of the Potts antiferromagnet on a lattice
. First, we improve our previous rigorous lower bound on for
the honeycomb (hc) lattice and find that it is extremely accurate; it agrees to
the first eleven terms with the large- series for . Second, we
investigate the heteropolygonal Archimedean lattice, derive a
rigorous lower bound, on , and calculate the large- series
for this function to where . Remarkably, these agree
exactly to all thirteen terms calculated. We also report Monte Carlo
measurements, and find that these are very close to our lower bound and series.
Third, we study the effect of non-nearest-neighbor couplings, focusing on the
square lattice with next-nearest-neighbor bonds.Comment: 13 pages, Latex, to appear in Phys. Rev.
Inhomogeneity-induced second-order phase transitions in Potts model on hierarchical lattices
The thermodynamics of the -state Potts model with arbitrary on a class
of hierarchical lattices is considered. Contrary to the case of the crystal
lattices, it has always the second-order phase transitions. The analytical
expressions fo the critical indexes are obtained, their dependencies on the
structural lattice pararmeters are studied and the scailing relations among
them are establised. The structural criterion of the inhomogeneity-induced
transformation of the transition order is suggested. The application of the
results to a description of critical phenomena in the dilute crystals and
substances confined in porous media is discussed.Comment: 9 pages, 2 figure
Families of Graphs with W_r({G},q) Functions That Are Nonanalytic at 1/q=0
Denoting as the chromatic polynomial for coloring an -vertex
graph with colors, and considering the limiting function , a fundamental question in graph theory is the
following: is analytic or not at the origin
of the plane? (where the complex generalization of is assumed). This
question is also relevant in statistical mechanics because
, where is the ground state entropy of the
-state Potts antiferromagnet on the lattice graph , and the
analyticity of at is necessary for the large- series
expansions of . Although is analytic at for many
, there are some for which it is not; for these, has no
large- series expansion. It is important to understand the reason for this
nonanalyticity. Here we give a general condition that determines whether or not
a particular is analytic at and explains the
nonanalyticity where it occurs. We also construct infinite families of graphs
with functions that are non-analytic at and investigate the
properties of these functions. Our results are consistent with the conjecture
that a sufficient condition for to be analytic at is
that is a regular lattice graph . (This is known not to be a
necessary condition).Comment: 22 pages, Revtex, 4 encapsulated postscript figures, to appear in
Phys. Rev.
- …
