5,285 research outputs found
Spontaneous two photon emission from a single quantum dot
Spontaneous two photon emission from a solid-state single quantum emitter is
observed. We investigated photoluminescence from the neutral biexciton in a
single semiconductor quantum dot coupled with a high Q photonic crystal
nanocavity. When the cavity is resonant to the half energy of the biexciton,
the strong vacuum field in the cavity inspires the biexciton to simultaneously
emit two photons into the mode, resulting in clear emission enhancement of the
mode. Meanwhile, suppression was observed of other single photon emission from
the biexciton, as the two photon emission process becomes faster than the
others at the resonance.Comment: 13 pages, 4 figure
2-4 Concluding Remarks(Discussions and Concluding Remarks,Session 2 : Surface Modification,SIMAP'88 Proceedings of International Symposium on Strategy of Innovation in Materials Processing-New Challenge for the 21st Century-)
LHC Benchmarks from Flavored Gauge Mediation
We present benchmark points for LHC searches from flavored gauge mediation
models, in which messenger-matter couplings give flavor-dependent squark
masses. Our examples include spectra in which a single squark - stop, scharm,
or sup - is much lighter than all other colored superpartners, motivating
improved quark flavor tagging at the LHC. Many examples feature flavor mixing;
in particular, large stop-scharm mixing is possible. The correct Higgs mass is
obtained in some examples by virtue of the large stop A-term. We also revisit
the general flavor and CP structure of the models. Even though the A-terms can
be substantial, their contributions to EDM's are very suppressed, because of
the particular dependence of the A-terms on the messenger coupling. This holds
regardless of the messenger-coupling texture. More generally, the special
structure of the soft terms often leads to stronger suppression of flavor- and
CP-violating processes, compared to naive estimates.Comment: 32 pages, 11 figures. Updated to published versio
Single-photon emitting diode in silicon carbide
Electrically driven single-photon emitting devices have immediate
applications in quantum cryptography, quantum computation and single-photon
metrology. Mature device fabrication protocols and the recent observations of
single defect systems with quantum functionalities make silicon carbide (SiC)
an ideal material to build such devices. Here, we demonstrate the fabrication
of bright single photon emitting diodes. The electrically driven emitters
display fully polarized output, superior photon statistics (with a count rate
of 300 kHz), and stability in both continuous and pulsed modes, all at room
temperature. The atomic origin of the single photon source is proposed. These
results provide a foundation for the large scale integration of single photon
sources into a broad range of applications, such as quantum cryptography or
linear optics quantum computing.Comment: Main: 10 pages, 6 figures. Supplementary Information: 6 pages, 6
  figure
Pair Excitations and Vertex Corrections in Fermi Fluids
Based on an equations--of--motion approach for time--dependent pair
correlations in strongly interacting Fermi liquids, we have developed a theory
for describing the excitation spectrum of these systems. Compared to the known
``correlated'' random--phase approximation (CRPA), our approach has the
following properties: i) The CRPA is reproduced when pair fluctuations are
neglected. ii) The first two energy--weighted sumrules are fulfilled implying a
correct static structure. iii) No ad--hoc assumptions for the effective mass
are needed to reproduce the experimental dispersion of the roton in 3He. iv)
The density response function displays a novel form, arising from vertex
corrections in the proper polarisation. Our theory is presented here with
special emphasis on this latter point. We have also extended the approach to
the single particle self-energy and included pair fluctuations in the same way.
The theory provides a diagrammatic superset of the familiar GW approximation.
It aims at a consistent calculation of single particle excitations with an
accuracy that has previously only been achieved for impurities in Bose liquids.Comment: to be published in: JLTP (2007) Proc. Int. Symp. QFS2006, 1-6 Aug.
  2006, Kyoto, Japa
- …
