2,256 research outputs found

    Functional characterization of Ebola virus L-domains using VSV recombinants

    Get PDF
    AbstractVSV recombinants containing the overlapping L-domain sequences from Ebola virus VP40 (PTAPPEY) were recovered by reverse-genetics. Replication kinetics of M40-WT, M40-P24L, and M40-Y30A were indistinguishable from VSV-WT in BHK-21 cells, whereas the double mutant (M40-P2728A) was defective in budding. Insertion of the Ebola L-domain region into VSV M protein was sufficient to alter the dependence on host proteins for efficient budding. Indeed, M40 recombinants containing a functional PTAP motif specifically incorporated endogenous tsg101 into budding virions and were dependent on tsg101 expression for efficient budding. Thus, VSV represents an excellent negative-sense RNA virus model for elucidating the functional aspects and diverse host interactions associated with the L-domains of Ebola virus

    Characteristics of Composted Bio-toilet Residue and Its Potential Use as a Soil Conditioner

    Full text link
    Bio-toilet is a dry toilet where human excreta is trapped in a lignocelluloses soil matrix such as wood sawdust, then it is decomposed by aerobic bacteria to organic compost rich in minerals such as N, P, and K. The study aimed to characterize the bio-toilet residue and its potential use as a soil conditioner for Jatropha curcas. The study was conducted in a private school of Daarut Tauhid in Bandung West Java. A bio-toilet S-50 type of Japan was constructed consisting of a composting chamber, mixer, heater, exhaust fan, and closet. The composting chamber was filled with 63 kg of Albizzia sawdust. Feces and urine was loaded daily by 54 students for 122-day observation. At the end of observation, the decomposed bio-toilet residue was evaluated for its physical properties such as bulk density (rb), porosity (%), and water retention (WR). Chemical properties such as pH, C/N ratio, N, P, and K, as well as microbiological properties such as numbers of bacteria, fungi, and worm eggs were evaluated at 14 and 122 days of decomposition process. Effect of the composted bio-toilet residue as plant growth media was evaluated using J. curcass as a plant indicator. Before it was used as a growth media, the composted bio-toilet residue was dried in a room temperature for 30 days. The experiment was designed in a completely randomized design 2 x 4 factorial with three replications. The first factor was the rate of composted biotoilet residue, i.e., 0, 20, 40, and 60% based on weight of the growth media mixture (1500 g pot-1), and the second was NPK fertilizer addition at 0 and 2 g pot-1. Each pot was planted with 2-month old of J. curcas seedlings. Parameters evaluated were leaf number, leaf area, stem height, and stem diameter measured at 12 weeks after planting. The results showed that the biotoilet residue was suitable as soil conditioner because it had high porosity (76%), low bulk density (0.19 g cm-3), high water retention (2.6 ml g-1 DM), neutral pH (6.9), C/N ratio 27, and contained N, P, K, and Na of 1.73, 1.15, 1.03, and 0.88%, respectively. Its microbial count showed only two kinds of bacteria, i.e., Klebsiella pneumonia and Escherichia coli, detected at 14 and 122 days of bio-toilet USAge. The composted bio-toilet residue improved vegetative performances of J. curcas as indicated by increasing leaf number, leaf area, stem height, and stem diameter

    Coupling of Josephson flux-flow oscillators to an external RC load

    Full text link
    We investigate by numerical simulations the behavior of the power dissipated in a resistive load capacitively coupled to a Josephson flux flow oscillator and compare the results to those obtained for a d.c. coupled purely resistive load. Assuming realistic values for the parameters R and C, both in the high- and in the low-Tc case the power is large enough to allow the operation of such a device in applications.Comment: uuencoded, gzipped tar archive containing 11 pages of REVTeX text + 4 PostScript figures. To appear in Supercond. Sci. Techno

    Resonances, instabilities, and structure selection of driven Josephson lattice in layered superconductors

    Full text link
    We investigate dynamics of Josephson vortex lattice in layered high Tc_{c} superconductors at high magnetic fields. It is shown that the average electric current depends on the lattice structure and is resonantly enhanced when the Josephson frequency matches the frequency of the plasma mode. We find the stability regions of moving lattice. It is shown that a specific lattice structure at given velocity is uniquely selected by the boundary conditions: at small velocities periodic triangular lattice is stable and looses its stability at some critical velocity. At even higher velocities a structure close to a rectangular lattice is restored.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Supermatrix models and multi ZZ-brane partition functions in minimal superstring theories

    Get PDF
    We study (p,q)=(2,4k) minimal superstrings within the minimal superstring field theory constructed in hep-th/0611045. We explicitly give a solution to the W_{1+\infty} constraints by using charged D-instanton operators, and show that the (m,n)-instanton sector with m positive-charged and n negative-charged ZZ-branes is described by an (m+n)\times (m+n) supermatrix model. We argue that the supermatrix model can be regarded as an open string field theory on the multi ZZ-brane system.Comment: 15 pages, 1 figure, minor chang
    • …
    corecore