2,574 research outputs found

    Coupling of Josephson flux-flow oscillators to an external RC load

    Full text link
    We investigate by numerical simulations the behavior of the power dissipated in a resistive load capacitively coupled to a Josephson flux flow oscillator and compare the results to those obtained for a d.c. coupled purely resistive load. Assuming realistic values for the parameters R and C, both in the high- and in the low-Tc case the power is large enough to allow the operation of such a device in applications.Comment: uuencoded, gzipped tar archive containing 11 pages of REVTeX text + 4 PostScript figures. To appear in Supercond. Sci. Techno

    Resonances, instabilities, and structure selection of driven Josephson lattice in layered superconductors

    Full text link
    We investigate dynamics of Josephson vortex lattice in layered high Tc_{c} superconductors at high magnetic fields. It is shown that the average electric current depends on the lattice structure and is resonantly enhanced when the Josephson frequency matches the frequency of the plasma mode. We find the stability regions of moving lattice. It is shown that a specific lattice structure at given velocity is uniquely selected by the boundary conditions: at small velocities periodic triangular lattice is stable and looses its stability at some critical velocity. At even higher velocities a structure close to a rectangular lattice is restored.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Supermatrix models and multi ZZ-brane partition functions in minimal superstring theories

    Get PDF
    We study (p,q)=(2,4k) minimal superstrings within the minimal superstring field theory constructed in hep-th/0611045. We explicitly give a solution to the W_{1+\infty} constraints by using charged D-instanton operators, and show that the (m,n)-instanton sector with m positive-charged and n negative-charged ZZ-branes is described by an (m+n)\times (m+n) supermatrix model. We argue that the supermatrix model can be regarded as an open string field theory on the multi ZZ-brane system.Comment: 15 pages, 1 figure, minor chang

    Collective responses of Bi-2212 stacked junction to 100 GHz microwave radiation under magnetic field oriented along the c-axis

    Full text link
    We studied a response of Bi-2212 mesa type structures to 100 GHz microwave radiation. We found that applying magnetic field of about 0.1 T across the layers enables to observe collective Shapiro step response corresponding to a synchronization of all 50 intrinsic Josephson junctions (IJJ) of the mesa. At high microwave power we observed up to 10th harmonics of the fundamental Shapiro step. Besides, we found microwave induced flux-flow step position of which is proportional to the square root of microwave power and that can exceed at high enough powers 1 THz operating frequency of IJJ oscillations.Comment: 11 pages including 5 figures, accepted for publication in JETP Letter

    Driven Dynamics: A Probable Photodriven Frenkel-Kontorova Model

    Full text link
    In this study, we examine the dynamics of a one-dimensional Frenkel-Kontorova chain consisting of nanosize clusters (the ''particles'') and photochromic molecules (the ''bonds''), and being subjected to a periodic substrate potential. Whether the whole chain should be running or be locked depends on both the frequency and the wavelength of the light (keeping the other parameters fixed), as observed through numerical simulation. In the locked state, the particles are bound at the bottom of the external potential and vibrate backwards and forwards at a constant amplitude. In the running state, the initially fed energy is transformed into directed motion as a whole. It is of interest to note that the driving energy is introduced to the system by the irradiation of light, and the driven mechanism is based on the dynamical competition between the inherent lengths of the moving object (the chain) and the supporting carrier (the isotropic surface). However, the most important is that the light-induced conformational changes of the chromophore lead to the time-and-space dependence of the rest lengths of the bonds.Comment: 4 pages,5 figure

    Notes on the algebraic curves in (p,q) minimal string theory

    Full text link
    Loop amplitudes in (p,q) minimal string theory are studied in terms of the continuum string field theory based on the free fermion realization of the KP hierarchy. We derive the Schwinger-Dyson equations for FZZT disk amplitudes directly from the W_{1+\infty} constraints in the string field formulation and give explicitly the algebraic curves of disk amplitudes for general backgrounds. We further give annulus amplitudes of FZZT-FZZT, FZZT-ZZ and ZZ-ZZ branes, generalizing our previous D-instanton calculus from the minimal unitary series (p,p+1) to general (p,q) series. We also give a detailed explanation on the equivalence between the Douglas equation and the string field theory based on the KP hierarchy under the W_{1+\infty} constraints.Comment: 61 pages, 1 figure, section 2.5 and Appendix B added, references added, final version to appear in JHE
    corecore