30 research outputs found

    Combined CI+MBPT calculations of energy levels and transition amplitudes in Be, Mg, Ca, and Sr

    Get PDF
    Configuration interaction (CI) calculations in atoms with two valence electrons, carried out in the V(N-2) Hartree-Fock potential of the core, are corrected for core-valence interactions using many-body perturbation theory (MBPT). Two variants of the mixed CI+MBPT theory are described and applied to obtain energy levels and transition amplitudes for Be, Mg, Ca, and Sr

    ABA signalling, grafting, irrigation scheduling, partial rootzone drying, tomato, water use.

    Get PDF
    The role of bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity in the interaction between tomato (Lycopersicon esculentum=Solanum lycopersicum) and Pseudomonas brassicacearum was studied in different strains. The phytopathogenic strain 520-1 possesses ACC deaminase activity, an important trait of plant growth-promoting rhizobacteria (PGPR) that stimulates root growth. The ACC-utilizing PGPR strain Am3 increased in vitro root elongation and root biomass of soil-grown tomato cv. Ailsa Craig at low bacterial concentrations (106 cells ml–1 in vitro and 106 cells g–1 soil) but had negative effects on in vitro root elongation at higher bacterial concentrations. A mutant strain of Am3 (designated T8-1) that was engineered to be ACC deaminase deficient failed to promote tomato root growth in vitro and in soil. Although strains T8-1 and 520-1 inhibited root growth in vitro at higher bacterial concentrations (>106 cells ml–1), they did not cause disease symptoms in vitro after seed inoculation, or in soil supplemented with bacteria. All the P. brassicacearum strains studied caused pith necrosis when stems or fruits were inoculated with a bacterial suspension, as did the causal organism of this disease (P. corrugata 176), but the non-pathogenic strain Pseudomonas sp. Dp2 did not. Strains Am3 and T8-1 were marked with antibiotic resistance and fluorescence to show that bacteria introduced to the nutrient solution or on seeds in vitro, or in soil were capable of colonizing the root surface, but were not detected inside root tissues. Both strains showed similar colonization ability either on root surfaces or in wounded stems. The results suggest that bacterial ACC deaminase of P. brassicacearum Am3 can promote growth in tomato by masking the phytopathogenic properties of this bacterium

    Evidence for Horizontal Transfer of 1-Aminocyclopropane-1-Carboxylate Deaminase Genes

    No full text
    PCR was used to rapidly identify and isolate 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes from bacteria. The Shimodaira-Hasegawa test was used to assess whether phylogenetically anomalous gene placements suggestive of horizontal gene transfer (HGT) were significantly favored over vertical transmission. The best maximum likelihood (ML) ACC deaminase tree was significantly more likely than four alternative ML trees, suggesting HGT

    Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12

    Full text link
    Members of the genus Burkholderia are highly versatile bacteria that can be beneficial as well as pathogenic for their eukaryotic hosts. Furthermore, many strains exhibit a remarkable biotechnological potential. To study the ecosystem function and lifestyle of B. terricola, we analysed the interactions with plants and survival in soil as well as the mechanisms behind it. We used a combination of in vitro and ad planta assays to study Burkholderia-plant interaction and assess the role of poly-beta-hydroxybutyrate (PHB). Additionally, DsRed-labelled bacteria were analysed by confocal laser scanning microscopy (CLSM) to study root colonisation. B. terricola ZR2-12 treatment resulted in enhanced growth of sugar beet plants with a more than doubled biomass relative to the non-treated control. The strain was a remarkable good root coloniser, which was found in rhizosphere as well as endorhiza of sugar beet up to 10 log(10) CFU g(-1). Using CLSM, we observed that ZR2-12 cells form large micro-colonies along the apoplastic spaces of the root. Xylem vessels were colonised by smaller aggregates and single cells, whereas in root tips mainly single cells were present. The colonisation patterns differed strongly between older and younger parts of the roots. PHB production of ZR2-12 (up to 70% (w/w) of cell dry mass) provided a competitive advantage for rhizosphere colonisation. B. terricola ZR2-12 belongs to the plant-associated Burkholderia cluster with biotechnological potential due to its excellent root colonisation and plant growth promotion
    corecore