1,465 research outputs found

    Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics

    Get PDF
    A high-speed imaging system with shutter speeds as fast as 2 ns and double frame capability has been used to directly image the formation and evolution of the sustained spheromak physics experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)]. Reproducible plasma features have been identified with this diagnostic and divided into three groups, according to the stage in the discharge at which they occur: (i) breakdown and ejection, (ii) sustainment, and (iii) decay. During the first stage, plasma descends into the flux conserver shortly after breakdown and a transient plasma column is formed. The column then rapidly bends and simultaneously becomes too dim to photograph a few microseconds after formation. It is conjectured here that this rapid bending precedes the transfer of toroidal to poloidal flux. During sustainment, a stable plasma column different from the transient one is observed. It has been possible to measure the column diameter and compare it to CORSICA [A. Tarditi et al., Contrib. Plasma Phys. 36, 132 (1996)], a magnetohydrodynamic equilibrium reconstruction code which showed good agreement with the measurements. Elongation and velocity measurements were made of cathode patterns also seen during this stage, possibly caused by pressure gradients or E×B drifts. The patterns elongate in a toroidal-only direction which depends on the magnetic-field polarity. During the decay stage the column diameter expands as the current ramps down, until it eventually dissolves into filaments. With the use of magnetic probes inserted in the gun region, an X point which moved axially depending on current level and toroidal mode number was observed in all the stages of the SSPX plasma discharge

    Search for Ferromagnetism in doped semiconductors in the absence of transition metal ions

    Full text link
    In contrast to semiconductors doped with transition metal magnetic elements, which become ferromagnetic at temperatures below ~ 100K, semiconductors doped with non-magnetic ions (e.g. silicon doped with phosphorous) have not shown evidence of ferromagnetism down to millikelvin temperatures. This is despite the fact that for low densities the system is expected to be well modeled by the Hubbard model, which is predicted to have a ferromagnetic ground state at T=0 on 2- or 3-dimensional bipartite lattices in the limit of strong correlation near half-filling. We examine the impurity band formed by hydrogenic centers in semiconductors at low densities, and show that it is described by a generalized Hubbard model which has, in addition to strong electron-electron interaction and disorder, an intrinsic electron-hole asymmetry. With the help of mean field methods as well as exact diagonalization of clusters around half filling, we can establish the existence of a ferromagnetic ground state, at least on the nanoscale, which is more robust than that found in the standard Hubbard model. This ferromagnetism is most clearly seen in a regime inaccessible to bulk systems, but attainable in quantum dots and 2D heterostructures. We present extensive numerical results for small systems that demonstrate the occurrence of high-spin ground states in both periodic and positionally disordered 2D systems. We consider how properties of real doped semiconductors, such as positional disorder and electron-hole asymmetry, affect the ground state spin of small 2D systems. We also discuss the relationship between this work and diluted magnetic semiconductors, such as Ga_(1-x)Mn_(x)As, which though disordered, show ferromagnetism at relatively high temperatures.Comment: 47 page

    The Relationship Between Sleep Quality and Memory

    Get PDF
    Sleep quality and memory are both relevant topics in today’s society, especially among college students. Purpose: To determine if there is a correlation between sleep quality and short-term memory including objective and subjective measures. Methods: This study consisted of 25 participants, 6 males and 19 females, ages ranging from 19 to 22 (20.8±0.8 years), who avoided stimulants, caffeine or other sleep altering drugs for at least eight hours. Our participants were recruited via word of mouth, poster, and discussions in classroom settings. Participants memorized a list of 30 words for two minutes and then had two minutes to recall and write as many words as possible. Sleep quality was measured with the Pittsburg Sleep Quality Index and then scored using the official Pittsburg Index score sheet, and perceived memory was scored at face value. An independent t-test was used to determine if there was a significant difference between genders on their sleep quality, Memory Functioning Questionnaire scores, and their ability to recall words. Results: The test revealed no significant difference (p=0.68) between the sleep quality of males (7±3) and females (7±3). There was also no significant difference (p=0.16) between the number of words recalled by males (14±4 words) and females (11±3 words). The difference between the Memory Functioning Questionnaire scores of males (318±37) and females (282±55) was not significant (p=0.10). No significant difference (p=0.45) was found between science majors (8±4) and non-science majors (8±3) on sleep quality. Similarly, Memory Functioning Questionnaire scores were not significantly different (p=0.73) for science majors (285±52) and non-science majors (293±55). The test for recalled words also showed no significant difference (p=0.99) between science majors (12±3 words) and non-science majors (12±3 words)

    Ground Motions Induced by the March 11, 2018, Implosion of the Capital Plaza Tower, Frankfort, Kentucky

    Get PDF
    The demolition by implosion of the Capital Plaza Tower in downtown Frankfort provided an opportunity to record seismic waves from a known source of seismic energy in order to observe local ground-motion amplification and resonance within the underlying unconsolidated sediment. The Kentucky Geological Survey deployed three strong-motion accelerographs at approximately equal distances around the tower to record ground motions induced by its collapse. The KGS instruments were installed at sites with different underlying geology: one on bedrock and two on Kentucky River Valley unconsolidated sediments. Using images captured by a high-speed video camera, with timing synchronized with the clock of one of the strong-motion accelerographs, the sequence of ground-motion-inducing events from the tower demolition (blast explosions and the collapsing tower’s impact with the ground) was identified in the ground-motion time histories recorded at the rock site. This allowed the ground motions from the tower collapse recorded at all stations deployed for the event to be isolated and analyzed. The ground motions from the tower collapse recorded at the observation sites were weak and were likely imperceptible to humans. The detected motions, which had modified Mercalli intensities of only I to II at the rock and soil sites, respectively, were unlikely to have caused any damage there. Seismic-wave resonance within the Kentucky River Valley sediment was identified from the analysis of these recordings. The resonance frequencies were similar at all KGS soil sites, and also were similar to those observed on seismographs deployed by the Energy and Environment Cabinet’s Explosives and Blasting Branch. These observations indicate that in the unlikely event of a nearby strong earthquake, shaking is expected to be amplified within the unconsolidated Kentucky River Valley sediments underlying downtown Frankfort

    Seismic Monitoring and Baseline Microseismicity in the Rome Trough, Eastern Kentucky

    Get PDF
    In the central and eastern United States, felt earthquakes likely triggered by fluid injection from oil and gas production or wastewater disposal have dramatically increased in frequency since the onset of the unconventional shale gas and oil boom. In the Rome Trough of eastern Kentucky, fracture stimulations and wastewater injection are ongoing and occur near areas of historical seismic activity. Unlike in surrounding and nearby states (Ohio, West Virginia, and Arkansas), in Kentucky, no seismic events related to subsurface fluid injections have been reported as felt or detected by regional seismic networks, including the Kentucky Seismic and Strong-Motion Network. Oil and gas development of the deep Cambrian Rogersville Shale in the Rome Trough is in a very early stage, and will require horizontal drilling and high-volume hydraulic fracturing. To characterize natural seismicity rates and the conditions that might lead to induced or triggered events, the Kentucky Geological Survey is conducting a collaborative study, the Eastern Kentucky Microseismic Monitoring Project, prior to large-scale oil and gas production and wastewater injection. A temporary network of broadband seismographs was deployed near dense clusters of Class II wastewater-injection wells and near the locations of new, deep oil and gas test wells in eastern Kentucky. Network installation began in mid-2015 and by November 2015, 12 stations were operating, with data acquired in real time and jointly with regional network data. Additional stations were installed between June 2016 and October 2017 in targeted locations. The network improved the monitoring sensitivity near wastewater-injection wells and deep oil and gas test wells by approximately an entire unit of magnitude: With the temporary network, the detectable magnitudes range from 0.7 to 1.0, and without it, the detectable magnitudes range from 1.5 to 1.9. Using the real-time recordings of this network in tandem with the recordings of other temporary and permanent regional seismic stations, we generated a catalog of local seismicity and developed a calibrated magnitude scale. At the time this report was prepared, 151 earthquakes had been detected and located, 38 of which were in the project area, defined as the region bounded by 37.1°N to 38.7°N latitude and 84.5°W to 82.0°W longitude. Only six earthquakes occurred in the Rome Trough of eastern Kentucky, none of which were reported in regional monitoring agency catalogs, and none of which appear to be associated with the deep Rogersville Shale test wells that were completed during the time the network was in operation or with wastewater-injection wells

    Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids

    Full text link
    We have carried out extensive equilibrium molecular dynamics (MD) simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures of Lennard-Jones (LJ) fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78<T<102o78 < T < 102 ^{\rm o}K, --in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stables in time. We find that below 90o90 ^{\rm o}K, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.Comment: 18 Latex-RevTex pages including 12 encapsulated postscript figures. Figures with better resolution available upon request. Accepted for publication in Phys. Rev. E Dec. 1st issu

    Surface, but Not Age, Impacts Lower Limb Joint Work during Walking and Stair Ascent

    Get PDF
    Older adults often suffer an accidental fall when navigating challenging surfaces during common locomotor tasks, such as walking and ascending stairs. This study examined the effect of slick and uneven surfaces on lower limb joint work in older and younger adults while walking and ascending stairs. Fifteen young (18–25 years) and 12 older (\u3e65 years) adults had stance phase positive limb and joint work quantified during walking and stair ascent tasks on a normal, slick, and uneven surface, which was then submitted to a two-way mixed model ANOVA for analysis. The stair ascent required greater limb, and hip, knee, and ankle work than walking (all p \u3c 0.001), with participants producing greater hip and knee work during both the walk and stair ascent (both p \u3c 0.001). Surface, but not age, impacted positive limb work. Participants increased limb (p \u3c 0.001), hip (p = 0.010), and knee (p \u3c 0.001) positive work when walking over the challenging surfaces, and increased hip (p = 0.015), knee (p \u3c 0.001), and ankle (p = 0.010) work when ascending stairs with challenging surfaces. Traversing a challenging surface during both walking and stair ascent tasks required greater work production from the large proximal hip and knee musculature, which may increase the likelihood of an accidental fall in older adults

    Surface, but Not Age Impact Lower Limb Joint Work During Walk and Stair Ascent

    Get PDF
    During common locomotor activates, such as walk or stair negotiation, older adults exhibit unfavorable lower limb biomechanical changes, including diminished joint torque and power, and proximal mechanical work redistribution that may increase their fall risk. Twelve young (18 to 25 years) and 12 older (\u3e 65 years) adults performed a walk and stair ascent task on a normal, slick, and uneven surface. For each walk and stair ascent trial, synchronous 3D marker trajectories and GRF data were collected. Stance phase positive limb and joint work, and relative joint work were submitted to statistical analysis. Ascending stairs required more positive work than the walk, particularly from the knee, which may increase fall risk. Yet, both walking and ascending stairs over a challenging surface required more, proximally distributed work

    Surface, but Not Age Impacts Lower Limb Joint Work During Stair Ascent

    Get PDF
    Introduction: Age-related loss in lower limb strength, particularly at the ankle, may impair older adults (over 65 years of age) mobility, and result in biomechanical deficits compared to their younger counterparts. Older adults tend to walk slower with shorter steps and exhibit diminished ankle joint kinetics (i.e., moment, power and work). Although the compromised ankle function leads older adults to produce smaller ankle joint torques and power output, reducing forces to propel the center of mass forward, it is unclear if they redistributed, or increase hip or knee work to safely walk, particularly when challenged with an uneven or slick surface. Objective: To compare positive lower limb work for young and older adults when walking over challenging surfaces, and determine whether redistributed power output. Methods: Twenty-eight (16 young, 18 to 25 years and 12 older, over 65 years) adults had positive work in the lower limb quantified when walking a self-selected speed over three surfaces (normal, uneven, and slick). Total limb, hip, knee and ankle positive work, and relative effort (% of total) at each joint were submitted to RM ANOVA to test main effect and interaction between surface (normal, uneven, and slick) and age (young and older adults). Results: Surface, but not age impact positive lower limb work. Surface impacted total limb (p=0.000), hip (p=0.007) and knee (p=0.001) positive work. The limb and knee produced more positive work on the uneven compared normal (

    Growing North American indigenous corn

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311
    • …
    corecore