35 research outputs found

    Risk Prediction for Acute Kidney Injury in Acute Medical Admissions in the UK

    Get PDF
    Background Acute Kidney Injury (AKI) is associated with adverse outcomes; identifying patients who are at risk of developing AKI in hospital may lead to targeted prevention. This approach is advocated in national guidelines but is not well studied in acutely unwell medical patients. We therefore aimed to undertake a UK-wide study in acute medical units (AMUs) with the following aims: to define the proportion of acutely unwell medical patients who develop hospital-acquired AKI (hAKI); to determine risk factors associated with the development of hAKI; and to assess the feasibility of using these risk factors to develop an AKI risk prediction score. Methods In September 2016, a prospective multicentre cohort study across 72 UK AMUs was undertaken. Data were collected from all patients who presented over a 24-hour period. Chronic dialysis, community-acquired AKI (cAKI) and those with fewer than two creatinine measurements were subsequently excluded. The primary outcome was the development of h-AKI. Results 2,446 individuals were admitted to the AMUs of the 72 participating centres. 384 patients (16%) sustained AKI of whom 287 (75%) were cAKI and 97 (25%) were hAKI. After exclusions, 1,235 participants remained in whom chronic kidney disease (OR 3.08, 95% CI 1.96-4.83), diuretic prescription (OR 2.33, 95% CI 1.5-3.65), a lower haemoglobin concentration and an elevated serum bilirubin were independently associated with development of hAKI. Multivariable model discrimination was moderate (c-statistic 0.75), and this did not support the development of a robust clinical risk prediction score. Mortality was higher in those with hAKI (adjusted OR 5.22; 95% CI 2.23-12.20). Conclusion AKI in AMUs is common and associated with worse outcomes, with the majority of cases community acquired. The smaller proportion of hAKI cases, only moderate discrimination of prognostic risk factor modelling and the resource implications of widespread application of an AKI clinical risk score across all AMU admissions suggests that this approach is not currently justified. More targeted risk assessment or automated methods of calculating individual risk may be more appropriate alternatives

    Understanding the contribution of native tracheobronchial structure to lung function: CT assessment of airway morphology in never smokers

    No full text
    Abstract Background: Computed tomographic (CT) airway lumen narrowing is associated with lower lung function. Although volumetric CT measures of airways (wall volume [WV] and lumen volume [LV]) compared to cross sectional measures can more accurately reflect bronchial morphology, data of their use in never smokers is scarce. We hypothesize that native tracheobronchial tree morphology as assessed by volumetric CT metrics play a significant role in determining lung function in normal subjects. We aimed to assess the relationships between airway size, the projected branching generation number (BGN) to reach airways of <2mm lumen diameter -the site for airflow obstruction in smokers-and measures of lung function including forced expiratory volume in 1 second (FEV 1 ) and forced expiratory flow between 25% and 75% of vital capacity . Methods: We assessed WV and LV of segmental and subsegmental airways from six bronchial paths as well as lung volume on CT scans from 106 never smokers. We calculated the lumen area ratio of the subsegmental to segmental airways and estimated the projected BGN to reach a <2mm-lumen-diameter airway assuming a dichotomized tracheobronchial tree model. Regression analysis was used to assess the relationships between airway size, BGN, FEF 25-75, and FEV 1 . Results: We found that in models adjusted for demographics, LV and WV of segmental and subsegmental airways were directly related to FEV 1 (P <0.05 for all the models). In adjusted models for age, sex, race, LV and lung volume or height, the projected BGN was directly associated with FEF 25-75 and FEV 1 (P = 0.001) where subjects with lower FEV 1 had fewer calculated branch generations between the subsegmental bronchus and small airways. There was no association between airway lumen area ratio and lung volume. Conclusion: We conclude that in never smokers, those with smaller central airways had lower airflow and those with lower airflow had less parallel airway pathways independent of lung size. These findings suggest that variability in the structure of the tracheobronchial tree may influence the risk of developing clinically relevant smoking related airway obstruction
    corecore