83 research outputs found
Clonal analysis of a human antibody response. Quantitation of precursors of antibody-producing cells and generation and characterization of monoclonal IgM, IgG, and IgA to rabies virus.
We quantitated and characterized the changes in the human B cell repertoire, at the clonal level, before and after immunization with rabies virus. Moreover, we generated 10 monoclonal cell lines producing IgM, IgG, and IgA antibodies to the virus. We found that in healthy subjects, not previously exposed to the virus, nearly 2% of the circulating B lymphocytes were committed to the production of antibodies that bound the virus. These B cells expressed the surface CD5 molecule. The antibodies they produced were polyreactive IgM that displayed a relatively low affinity for the virus components (Kd, 1.0-2.4 x 10(-6) g/microliters). After immunization, different anti-virus (IgG and IgA) antibody-producing cells consistently appeared in the circulation and increased from less than 0.005% to greater than 10% of the total B cells committed to the production of IgG and IgA, respectively. Most of such B cells do not express CD5 and produce monoreactive antibodies of high affinity for rabies virus (Kd, 6.5 x 10(-9) to 1.2 x 10(-10) g/microliters). One of these IgG mAbs efficiently neutralized rabies virus in vitro and in vivo, as detailed elsewhere (Dietzschold, B., P. Casali, Y. Ueki, M. Gore, C. E. Rupprecht, A. L. Notkins, and H. Koprowski, manuscript submitted for publication). Hybridization experiments using probes specific for the different human V gene segment families revealed that cell precursors producing low affinity IgM binding to rabies virus utilized a restricted number of VH gene segments (i.e., only members of the VHIIIb subfamily), whereas cell precursors producing high affinity IgG and IgA to rabies virus utilized an assortment of different VH gene segments (i.e., members of the VHI, VHIII, VHIV, and VHVI families and VHIIIb subfamily). In conclusion, our studies show that EBV transformation in conjunction with limiting dilution technology and somatic cell hybridization techniques are useful methods for quantitating, at the B cell clonal level, the human antibody response to foreign Ags and for generating human mAbs of predetermined specificity and high affinity
Cosmologies with Null Singularities and their Gauge Theory Duals
We investigate backgrounds of Type IIB string theory with null singularities
and their duals proposed in hep-th/0602107. The dual theory is a deformed N=4
Yang-Mills theory in 3+1 dimensions with couplings dependent on a light-like
direction. We concentrate on backgrounds which become AdS_5 x S^5 at early and
late times and where the string coupling is bounded, vanishing at the
singularity. Our main conclusion is that in these cases the dual gauge theory
is nonsingular. We show this by arguing that there exists a complete set of
gauge invariant observables in the dual gauge theory whose correlation
functions are nonsingular at all times. The two-point correlator for some
operators calculated in the gauge theory does not agree with the result from
the bulk supergravity solution. However, the bulk calculation is invalid near
the singularity where corrections to the supergravity approximation become
important. We also obtain pp-waves which are suitable Penrose limits of this
general class of solutions, and construct the Matrix Membrane theory which
describes these pp-wave backgrounds.Comment: 43 pages REVTeX and AMSLaTeX. v2: references adde
Compactification near and on the light front
We address problems associated with compactification near and on the light
front. In perturbative scalar field theory we illustrate and clarify the
relationships among three approaches: (1) quantization on a space-like surface
close to a light front; (2) infinite momentum frame calculations; and (3)
quantization on the light front. Our examples emphasize the difference between
zero modes in space-like quantization and those in light front quantization. In
particular, in perturbative calculations of scalar field theory using
discretized light cone quantization there are well-known ``zero-mode induced''
interaction terms. However, we show that they decouple in the continuum limit
and covariant answers are reproduced. Thus compactification of a light-like
surface is feasible and defines a consistent field theory.Comment: 24 pages, 4 figure
Density matrix renormalization group in a two-dimensional Hamiltonian lattice model
Density matrix renormalization group (DMRG) is applied to a (1+1)-dimensional
model. Spontaneous breakdown of discrete symmetry is
studied numerically using vacuum wavefunctions. We obtain the critical coupling
and the critical exponent
, which are consistent with the Monte Carlo and the
exact results, respectively. The results are based on extrapolation to the
continuum limit with lattice sizes , and 1000. We show that the
lattice size L=500 is sufficiently close to the the limit .Comment: 16 pages, 10 figures, minor corrections, accepted for publication in
JHE
Towards a novel framework of barriers and drivers for digital transformation in industrial supply chains
© 2019 PICMET. Businesses across all sectors are facing the complexity of an increasingly digital economy. Digital transformation offers vast opportunities to businesses and entire supply chains. While many investments are targeted at the organization level, the supply chain perspective can lead to even greater impacts on business performance. However, as supply chains involve interconnections between multiple actors, comprehensive digitalization initiatives at this level are very complex. Several strategic factors affect decision-making around digital investments. For this reason, a framework that categorizes all these factors is needed in order to help managers build digitalization strategies for their supply chains. In this paper, based on a review of existing literature, we give indications for a framework encompassing barriers to and drivers for digital transformation in the context of industrial supply chains. Our framework preliminarily allocates these factors by using two dimensions. The first one classifies them using several categories: financial, knowledge and skills, regulatory, technological, market, organizational, and cultural. The second dimension classifies determinants at the level on which actions can be made, i.e. market, supply chain, or organization. The framework can support organizations to exploit the opportunities provided by digitalization of supply chains and will help managers understand the complexity involved
NAMBU-GOLDSTONE BOSON ON THE LIGHT-FRONT
Spontaneous breakdown of the continuous symmetry is studied in the framework
of discretized light-front quantization. We consider linear sigma model in 3+1
dimensions and show that the careful treatment of zero modes together with the
regularization of the theory by introducing NG boson mass leads to the correct
description of Nambu-Goldstone phase on the light-front.Comment: To appear in the proceedings of the 13th Symposium on Theoretical
Physics, Mt. Sorak, Korea, from 27 June to 2 July, 1994
Light-Front Nuclear Physics: Mean Field Theory for Finite Nuclei
A light-front treatment for finite nuclei is developed from a relativistic
effective Lagrangian (QHD1) involving nucleons, scalar mesons and vector
mesons. We show that the necessary variational principle is a constrained one
which fixes the expectation value of the total momentum operator to be
the same as that for . This is the same as minimizing the sum of the total
momentum operators: . We obtain a new light-front version of the
equation that defines the single nucleon modes. The solutions of this equation
are approximately a non-trivial phase factor times certain solutions of the
usual equal-time Dirac equation. The ground state wave function is treated as a
meson-nucleon Fock state, and the meson fields are treated as expectation
values of field operators in that ground state. The resulting equations for
these expectation values are shown to be closely related to the usual meson
field equations. A new numerical technique to solve the self-consistent field
equations is introduced and applied to O and Ca. The computed
binding energies are essentially the same as for the usual equal-time theory.
The nucleon plus momentum distribution (probability for a nucleon to have a
given value of ) is obtained, and peaks for values of about seventy
percent of the nucleon mass. The mesonic component of the ground state wave
function is used to determine the scalar and vector meson momentum distribution
functions, with a result that the vector mesons carry about thirty percent of
the nuclear plus-momentum. The vector meson momentum distribution becomes more
concentrated at as increases.Comment: 36 pages, 2 figure
Spontaneous Symmetry Breaking at Infinite Momentum without P+ Zero-Modes
The nonrelativistic interpretation of quantum field theory achieved by
quantization in an infinite momentum frame is spoiled by the inclusion of a
mode of the field carrying p+=0. We therefore explore the viability of doing
without such a mode in the context of spontaneous symmetry breaking (SSB),
where its presence would seem to be most needed. We show that the physics of
SSB in scalar quantum field theory in 1+1 space-time dimensions is accurately
described without a zero-mode.Comment: LaTeX, 8 pages, 3 eps figure
Infinite Nuclear Matter on the Light Front: Nucleon-Nucleon Correlations
A relativistic light front formulation of nuclear dynamics is developed and
applied to treating infinite nuclear matter in a method which includes the
correlations of pairs of nucleons: this is light front Brueckner theory. We
start with a hadronic meson-baryon Lagrangian that is consistent with chiral
symmetry. This is used to obtain a light front version of a one-boson-exchange
nucleon-nucleon potential (OBEP). The accuracy of our description of the
nucleon-nucleon (NN) data is good, and similar to that of other relativistic
OBEP models. We derive, within the light front formalism, the Hartree-Fock and
Brueckner Hartree-Fock equations. Applying our light front OBEP, the nuclear
matter saturation properties are reasonably well reproduced. We obtain a value
of the compressibility, 180 MeV, that is smaller than that of alternative
relativistic approaches to nuclear matter in which the compressibility usually
comes out too large. Because the derivation starts from a meson-baryon
Lagrangian, we are able to show that replacing the meson degrees of freedom by
a NN interaction is a consistent approximation, and the formalism allows one to
calculate corrections to this approximation in a well-organized manner. The
simplicity of the vacuum in our light front approach is an important feature in
allowing the derivations to proceed. The mesonic Fock space components of the
nuclear wave function are obtained also, and aspects of the meson and nucleon
plus-momentum distribution functions are computed. We find that there are about
0.05 excess pions per nucleon.Comment: 39 pages, RevTex, two figure
Zero Mode and Symmetry Breaking on the Light Front
We study the zero mode and the spontaneous symmetry breaking on the light
front (LF). We use the discretized light-cone quantization (DLCQ) of
Maskawa-Yamawaki to treat the zero mode in a clean separation from all other
modes. It is then shown that the Nambu-Goldstone (NG) phase can be realized on
the trivial LF vacuum only when an explicit symmetry-breaking mass of the NG
boson is introduced. The NG-boson zero mode integrated over the LF
must exhibit singular behavior in the symmetric limit
, which implies that current conservation is violated at zero
mode, or equivalently the LF charge is not conserved even in the symmetric
limit. We demonstrate this peculiarity in a concrete model, the linear sigma
model, where the role of zero-mode constraint is clarified. We further compare
our result with the continuum theory. It is shown that in the continuum theory
it is difficult to remove the zero mode which is not a single mode with measure
zero but the accumulating point causing uncontrollable infrared singularity. A
possible way out within the continuum theory is also suggested based on the
`` theory''. We finally discuss another problem of the zero mode in the
continuum theory, i.e., no-go theorem of Nakanishi-Yamawaki on the
non-existence of LF quantum field theory within the framework of Wightman
axioms, which remains to be a challenge for DLCQ, `` theory'' or any other
framework of LF theory.Comment: 60 pages, the final section has been expanded. A few minor
corrections; version to be published in Phys. Rev.
- âŠ