3,363 research outputs found

    Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky and the locations of the fiber positioners in the focal plane of the telescope, with the observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, but with coverage varying between zero and twelve, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P(k,μ)P(k,\mu) and remove the lowest μ\mu bin, leaving μ>0\mu>0 modes accurate at the few-percent level. Here, μ\mu is the cosine of the angle between the line-of-sight and the direction of k\vec{k}. We also investigate two alternative definitions of the random catalog and show they are comparable but less effective than the coverage randoms method.Comment: Submitted to JCA

    Polarisation observables in lepton antilepton to proton antiproton reactions including lepton mass

    Get PDF
    General expressions, including the lepton mass, for the spin averaged differential cross section for the annihilation reaction lepton antilepton to proton antiproton are given, as well as general formulae for the single and double spin asymmetries in the centre of mass frame. In particular we discuss the single spin asymmetry, normal to the scattering plane, which measures the relative phase difference between nucleon electromagnetic form factors GEG_E and GMG_M. Recent experimental investigations of these form factors in the space and time like region are reviewed. It is thought that measurements of the phase of these form factors will provide fundamental information on the internal nucleon structure. The phases between GEG_E and GMG_M are accessible through polarisation observables measured in the antiproton proton to lepton antilepton reaction, or in its time reversed process.Comment: 14 pages, to be submitted to EPJ

    Exciting dark matter in the galactic center

    Full text link
    We reconsider the proposal of excited dark matter (DM) as an explanation for excess 511 keV gamma rays from positrons in the galactic center. We quantitatively compute the cross section for DM annihilation to nearby excited states, mediated by exchange of a new light gauge boson with off-diagonal couplings to the DM states. In models where both excited states must be heavy enough to decay into e^+ e^- and the ground state, the predicted rate of positron production is never large enough to agree with observations, unless one makes extreme assumptions about the local circular velocity in the Milky Way, or alternatively if there exists a metastable population of DM states which can be excited through a mass gap of less than 650 keV, before decaying into electrons and positrons.Comment: Dedicated to the memory of Lev Kofman; 16 pages, 9 figures; v3 added refs, minor changes, accepted to PR

    Investigation of the Gravitational Potential Dependence of the Fine-Structure Constant Using Atomic Dysprosium

    Full text link
    Radio-frequency E1 transitions between nearly degenerate, opposite parity levels of atomic dysprosium were monitored over an eight month period to search for a variation in the fine-structure constant. During this time period, data were taken at different points in the gravitational potential of the Sun. The data are fitted to the variation in the gravitational potential yielding a value of (8.7±6.6)×106(-8.7 \pm 6.6) \times 10^{-6} for the fit parameter kαk_\alpha. This value gives the current best laboratory limit. In addition, our value of kαk_{\alpha} combined with other experimental constraints is used to extract the first limits on k_e and k_q. These coefficients characterize the variation of m_e/m_p and m_q/m_p in a changing gravitational potential, where m_e, m_p, and m_q are electron, proton, and quark masses. The results are ke=(4.9±3.9)×105k_e = (4.9 \pm 3.9) \times 10^{-5} and kq=(6.6±5.2)×105k_q = (6.6 \pm 5.2) \times 10^{-5}.Comment: 6 pages, 3 figure

    Revision of basal macropodids from the Riversleigh World Heritage Area with descriptions of new material of Ganguroo bilamina Cooke, 1997 and a new species

    Get PDF
    The relationship of basal macropodids (Marsupialia: Macropodoidea) from the Oligo-Miocene of Australia have been unclear. Here, we describe a new species from the Bitesantennary Site within the Riversleigh's World Heritage Area (WHA), Ganguroo bites n. sp., new cranial and dental material of G. bilamina, and reassess material previously described as Bulungamaya delicata and 'Nowidgee matrix'. We performed a metric analysis of dental measurements on species of Thylogale which we then used, in combination with morphological features, to determine species boundaries in the fossils. We also performed a phylogenetic analysis to clarify the relationships of basal macropodid species within Macropodoidea. Our results support the distinction of G. bilamina, G. bites and B. delicata, but 'Nowidgee matrix' appears to be a synonym of B. delicata. The results of our phylogenetic analysis are inconclusive, but dental and cranial features suggest a close affinity between G. bilamina and macropodids. Finally, we revise the current understanding of basal macropodid diversity in Oligocene and Miocene sites at Riversleigh WHA
    corecore