6 research outputs found

    Galectin 3 regulates HCC cell invasion by RhoA and MLCK activation

    No full text
    Hepatocellular carcinoma (HCC) carries a poor prognosis with no effective treatment available other than liver transplantation for selected patients. Vascular invasion of HCC is one of the most important negative predictor of survival. As the regulation of invasion of HCC cells is not well understood, our aim was to study the mechanisms by which galectin 3, a β-galactosidase binding lectin mediates HCC cell migration. HCC was induced by N-diethylnitrosamine (DEN) in wild type and galectin 3(−/−) mice, and tumor formation, histology, and tumor cell invasion were assessed. The galectin 3(−/−) mice developed significantly smaller tumor burden with a less invasive phenotype than the wild type animals. Galectin 3 was upregulated in the wild type HCC tumor tissue, but not in the surrounding parenchyma. Galectin 3 expression in HCC was induced by NF-κB transactivation as determined by chromatin immunoprecipitation assays. In vitro studies assessed the pro-migratory effects of galectin 3. The migration of hepatoma cells was significantly decreased after transfection by the galectin 3 siRNA and also after using the Rho kinase (ROCK) inhibitor Y-27632. The reorganization of the actin cytoskeleton, RhoA GTP ase activity and the phosphorylation of MLC2 were decreased in the galectin 3 siRNA-transfected cells. In addition, in vitro and in vivo evidence showed that galectin 3 deficiency reduced hepatoma cell proliferation and increased their apoptosis rate. In conclusion, galectin 3 is an important lectin that is induced in HCC cells, and promotes hepatoma cell motility and invasion by an autocrine pathway. Targeting galectin 3 therefore could be an important novel treatment strategy to halt disease progression

    Tumor Microenvironment

    No full text
    corecore