9,908 research outputs found
Error Corrective Boosting for Learning Fully Convolutional Networks with Limited Data
Training deep fully convolutional neural networks (F-CNNs) for semantic image
segmentation requires access to abundant labeled data. While large datasets of
unlabeled image data are available in medical applications, access to manually
labeled data is very limited. We propose to automatically create auxiliary
labels on initially unlabeled data with existing tools and to use them for
pre-training. For the subsequent fine-tuning of the network with manually
labeled data, we introduce error corrective boosting (ECB), which emphasizes
parameter updates on classes with lower accuracy. Furthermore, we introduce
SkipDeconv-Net (SD-Net), a new F-CNN architecture for brain segmentation that
combines skip connections with the unpooling strategy for upsampling. The
SD-Net addresses challenges of severe class imbalance and errors along
boundaries. With application to whole-brain MRI T1 scan segmentation, we
generate auxiliary labels on a large dataset with FreeSurfer and fine-tune on
two datasets with manual annotations. Our results show that the inclusion of
auxiliary labels and ECB yields significant improvements. SD-Net segments a 3D
scan in 7 secs in comparison to 30 hours for the closest multi-atlas
segmentation method, while reaching similar performance. It also outperforms
the latest state-of-the-art F-CNN models.Comment: Accepted at MICCAI 201
Measuring correlated electron dynamics with time-resolved photoemission spectroscopy
Time-resolved photoemission experiments can reveal fascinating quantum
dynamics of correlated electrons. However, the thermalization of the electronic
system is typically so fast that very short probe pulses are necessary to
resolve the time evolution of the quantum state, and this leads to poor energy
resolution due to the energy-time uncertainty relation. Although the
photoemission intensity can be calculated from the nonequilibrium electronic
Green functions, the converse procedure is therefore difficult. We analyze a
hypothetical time-resolved photoemission experiment on a correlated electronic
system, described by the Falicov-Kimball model in dynamical mean-field theory,
which relaxes between metallic and insulating phases. We find that the
real-time Green function which describes the transient behavior during the
buildup of the metallic state cannot be determined directly from the
photoemission signal. On the other hand, the characteristic
collapse-and-revival oscillations of an excited Mott insulator can be observed
as oscillating weight in the center of the Mott gap in the time-dependent
photoemission spectrum.Comment: 12 pages, 5 figure
Temperature dependent photoemission on 1T-TiSe2: Interpretation within the exciton condensate phase model
The charge density wave phase transition of 1T-TiSe2 is studied by
angle-resolved photoemission over a wide temperature range. An important
chemical potential shift which strongly evolves with temperature is evidenced.
In the framework of the exciton condensate phase, the detailed temperature
dependence of the associated order parameter is extracted. Having a
mean-field-like behaviour at low temperature, it exhibits a non-zero value
above the transition, interpreted as the signature of strong excitonic
fluctuations, reminiscent of the pseudo-gap phase of high temperature
superconductors. Integrated intensity around the Fermi level is found to
display a trend similar to the measured resistivity and is discussed within the
model.Comment: 8 pages, 6 figure
Main phase transition in lipid bilayers: phase coexistence and line tension in a soft, solvent-free, coarse-grained model
We devise a soft, solvent-free, coarse-grained model for lipid bilayer
membranes. The non-bonded interactions take the form of a weighted-density
functional which allows us to describe the thermodynamics of self-assembly and
packing effects of the coarse-grained beads in terms of a density expansion of
the equation of state and the weighting functions that regularize the
microscopic bead densities, respectively. Identifying the length and energy
scales via the bilayer thickness and the thermal energy scale, kT, the model
qualitatively reproduces key characteristics (e.g., bending rigidity, area per
lipid molecules, and compressibility) of lipid membranes. We employ this model
to study the main phase transition between the liquid and the gel phase of the
bilayer membrane. We accurately locate the phase coexistence using free energy
calculations and also obtain estimates for the bare and the thermodynamic line
tension.Comment: 21 pages, 12 figures. Submitted to J. Chem. Phy
Langevin dynamics with a tilted periodic potential
We study a Langevin equation for a particle moving in a periodic potential in
the presence of viscosity and subject to a further external field
. For a suitable choice of the parameters and the
related deterministic dynamics yields heteroclinic orbits. In such a regime, in
absence of stochastic noise both confined and unbounded orbits coexist. We
prove that, with the inclusion of an arbitrarly small noise only the confined
orbits survive in a sub-exponential time scale.Comment: 38 pages, 6 figure
The Kolmogorov-Smirnov test and its use for the identification of fireball fragmentation
We propose an application of the Kolmogorov-Smirnov test for rapidity
distributions of individual events in ultrarelativistic heavy ion collisions.
The test is particularly suitable to recognise non-statistical differences
between the events. Thus when applied to a narrow centrality class it could
indicate differences between events which would not be expected if all events
evolve according to the same scenario. In particular, as an example we assume
here a possible fragmentation of the fireball into smaller pieces at the
quark/hadron phase transition. Quantitative studies are performed with a Monte
Carlo model capable of simulating such a distribution of hadrons. We conclude
that the Kolmogorov-Smirnov test is a very powerful tool for the identification
of the fragmentation process.Comment: 9 pages, 10 figure
Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape
We report experimental evidence that chaotic and non-chaotic scattering
through ballistic cavities display distinct signatures in quantum transport. In
the case of non-chaotic cavities, we observe a linear decrease in the average
resistance with magnetic field which contrasts markedly with a Lorentzian
behavior for a chaotic cavity. This difference in line-shape of the
weak-localization peak is related to the differing distribution of areas
enclosed by electron trajectories. In addition, periodic oscillations are
observed which are probably associated with the Aharonov-Bohm effect through a
periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.
Generation and Structure of Solitary Rossby Vortices in Rotating Fluids
The formation of zonal flows and vortices in the generalized
Charney-Hasegawa-Mima equation is studied. We focus on the regime when the size
of structures is comparable to or larger than the deformation (Rossby) radius.
Numerical simulations show the formation of anticyclonic vortices in unstable
shear flows and ring-like vortices with quiescent cores and vorticity
concentrated in a ring. Physical mechanisms that lead to these phenomena and
their relevance to turbulence in planetary atmospheres are discussed.Comment: 3 pages in REVTeX, 5 postscript figures separately, submitted to
Phys. Rev.
- …