31 research outputs found

    Histone Deacetylase Activity Modulates Alternative Splicing

    Get PDF
    There is increasing evidence to suggest that splicing decisions are largely made when the nascent RNA is still associated with chromatin. Here we demonstrate that activity of histone deacetylases (HDACs) influences splice site selection. Using splicing-sensitive microarrays, we identified ∼700 genes whose splicing was altered after HDAC inhibition. We provided evidence that HDAC inhibition induced histone H4 acetylation and increased RNA Polymerase II (Pol II) processivity along an alternatively spliced element. In addition, HDAC inhibition reduced co-transcriptional association of the splicing regulator SRp40 with the target fibronectin exon. We further showed that the depletion of HDAC1 had similar effect on fibronectin alternative splicing as global HDAC inhibition. Importantly, this effect was reversed upon expression of mouse HDAC1 but not a catalytically inactive mutant. These results provide a molecular insight into a complex modulation of splicing by HDACs and chromatin modifications

    Two Cap-Binding Proteins CBP20 and CBP80 are Involved in Processing Primary MicroRNAs

    No full text
    MicroRNAs (miRNAs) are 21 nt RNAs that regulate many biological processes in plants by mediating translational inhibition or cleavage of target transcripts. Arabidopsis mutants defective in miRNA biogenesis have overlapping and highly pleiotropic phenotypes including serrated leaves and ABA hypersensitivity. Recent evidence indicates that miRNA genes are transcribed by RNA polymerase II (Pol II). Since Pol II transcripts are capped, we hypothesized that CBP (cap-binding protein) 20 and 80 may bind to capped primary miRNA (pri-miRNA) transcripts and play a role in their processing. Here, we show that cbp20 and cbp80 mutants have reduced miRNA levels and increased pri-miRNA levels. Co-immunoprecipitation experiments revealed that pri-miRNAs 159, 166, 168 and 172 could be associated with CBP20 and CBP80. We found that CBP20 and CBP80 are stabilized by ABA by a post-translational mechanism, and these proteins are needed for ABA induction of miR159 during seed germination. The lack of miR159 accumulation in ABA-treated seeds of cbp20/80 mutants leads to increased MYB33 and MYB101 transcript levels, and presumably higher levels of these positive regulators result in ABA hypersensitivity. Genetic and molecular analyses show that CBP20 and 80 have overlapping function in the same developmental pathway as SE and HYL1. Our results identify new components in miRNA biogenesis
    corecore