27 research outputs found

    Nanofiltration de solutions de nitrate d'ammonium. Etude des paramètres influents

    Get PDF
    Cet article propose une étude de la rétention du nitrate d'ammonium par une membrane commerciale de nanofiltration (Nanomax 50). Les effets de la pression, de la concentration et de la vitesse d'écoulement tangentiel ont été étudiés avec le souci d'une meilleure compréhension du mécanisme de transport des ions nitrate et en vue d'une optimisation de la rétention. Le taux de rétention des ions nitrate augmente dans un premier temps avec la pression, atteint un maximum puis diminue. La rétention, pour des pressions élevées, peut cependant être améliorée en augmentant la vitesse d'écoulement tangentiel. La séparation résulterait d'un rapport de différentes forces : une force d'entraînement radial dans le pore (illustrée par l'effet de la pression transmembranaire), une force d'entraînement tangentiel vers le rétentat (illustrée par l'effet de la vitesse d'écoulement tangentiel) et une force de surface traduisant les interactions membrane-soluté (illustrée par l'effet de la concentration). L'équation de Spiegler et Kedem est proposée en première approche de modélisation pour une valeur limite de pression.Many water sources deal with the problem of increasing nitrate concentrations above authorised levels for drinking water. In order to minimise this amount of pollution and to achieve high quality of water and reused water in the distribution system, membrane processes are becoming a promising technology. Indeed, they present the major advantages of a small land area requirement, low temperature operation, continuous separation, better effluent quality, little or no sludge production and a large reduction in the quantities of chemical additives. Reverse osmosis has already been used to remove most of the nitrates together with the other solutes, but the disadvantage is that this technique induces a total demineralisation of the treated water. Another possible filtration process, nanofiltration, has been investigated in this study while no extensive research has been carried out on its nitrate removal potential. Theories cannot adequately predict the influence of operating parameters on membrane performance. Consequently, new membranes and modules must be experimentally evaluated for each new application. The main objective of this study was to provide fundamental data for designing an operation of nanofiltration under various operating conditions such as transmembrane pressure, cross-flow velocity and initial feed concentration for drinking water and water reuse purposes.The retention rate rises with an increase of the applied pressure, reaches a maximum and then decreases. Such a result is quite different from those usually mentioned in the literature where the retention increases and reaches a plateau when the pressure grows. The singular decrease of the retention rate observed in this study could be explained in terms of a concentration polarization phenomenon. However, since the volumetric flux increased linearly with the pressure and remained close to the pure water flux, it might be thought that such an assumption is not valid in the case of this work. Therefore, another hypothesis has to be provided to explain the variation of the retention with transmembrane pressure. As the size of NH4+ ion (ionic radius=0.148 nm) is lower than that of the pore of membrane (diameter=1 nm), cations can enter the pores where they are partially retained due to surface forces (electrostatic and friction forces). When the pressure increases, these forces remain constant while drag forces increase due to the flux in the pore. At low pressure (∆P < 5 bars), the surface forces are stronger than the drag forces. Therefore, the solute flux remains low while the solvent flux increases with the pressure, leading to an increase in the solute retention. Above a given pressure (≅ 5 bars), the drag forces become higher than the surface forces. Consequently, the retention rate decreases.As can be observed in the obtained results, the retention rate decreased when the feed concentration was increased regardless of the operating pressure. This effect is mainly attributed to the cation shielding of the effective charge of the membrane. This characteristic can be explained by the fact that the electric repulsion becomes less efficient at higher concentration. It has been recognized that the effective charge density of the membrane decreases with an increase in the feed concentration of an ionic solution. Consequently, the retention rate of the co-ion due to charge effect is reduced. It follows that a greater amount of nitrate ions could permeate when feed solutions of higher concentration are applied.The effect of cross-flow velocity on the fluxes is insignificant since the permeate flux depends only on transmembrane pressure. However, the retention performance increases with velocity. The lower the cross-flow velocity, the higher the interaction between the solute and the membrane. Therefore, at low cross-flow rate, the solute amount that enters the membrane pores is high. When the drag forces become stronger than the surface forces, as explained above, the retention sharply decreases. At high cross-flow velocity, the feed circulation transports a large solute amount and therefore, the solute amount that enters the pores is reduced and is less sensitive to operating pressure. In consequence, the sensitivity of the retention to transmembrane pressure is not so marked. It might be thought that for a very high cross-flow velocity, the retention increases and then remains constant.It was demonstrated in this work that nanofiltration can be successfully used to remove nitrates from water. The retention was shown to depend strongly on operating parameters such as feed solution concentration, applied pressure and circulation cross-flow rate. In fact, the retention is mainly determined by the intensity of the solute / membrane interaction. This interaction comes from two main forces: a tangential one due to the feed solute flow (illustrated by the cross-flow velocity effect) and a radial one in the pores due to drag forces (illustrated by the transmembrane pressure effect). Moreover, it was observed that the valence of the associated ions is an important factor that can affect nitrate retention. It can be expected that the optimization of the separation performance will result of the best combination of all these parameters. Therefore, with a view to a future industrial application, it will be necessary to take into consideration the chemical composition of the resource and to adapt the operating conditions to the desired objectives

    Method for etching a material in the presence of a solid particles

    No full text
    Procédé de gravure d'une structure (1) comprenant au moins un matériau à graver (4), comprenant : - choisir au moins une espèce chimique apte à réagir avec le matériau à graver (4), - choisir au moins un composé soluble apte à libérer l'espèce chimique précitée, - réaliser une solution (11) contenant ledit composé et contenant une poudre de particules ou grains solides (13) en suspension, - placer le matériau à graver en présence de la solution, - et produire dans la solution des ultrasons à haute fréquence, à au moins une fréquence, apte à générer des bulles actives de cavitation telles que l'espèce chimique est générée et réagit avec le matériau à graver en produisant un composé soluble ou un précipité

    Procédé et dispositif de gravure réactive

    No full text
    Method and device for etching a first material (4) selectively with respect to a second material (2), comprising a bath (11) of a solution capable of producing at least one chemical species for etching the first material (4) but not the second (2), and a system (12) for generating ultrasound at a frequency between 100 kHz and 3 MHz in the bath so as to produce cavitation bubbles

    Method for etching a material in the presence of a gas

    No full text
    Procédé de gravure d'une structure (1) comprenant au moins un matériau à graver (4), comprenant : - choisir au moins une espèce chimique apte à réagir avec le matériau à graver (4), - choisir au moins un composé soluble apte à libérer l'espèce chimique précitée, - réaliser une solution (11) contenant ledit composé, - placer la structure (1) dans une position telle que la surface du matériau à graver soit en présence de la solution et de bulles additionnelles d'un gaz, - et produire dans la solution des ultrasons à haute fréquence, à au moins une fréquence, apte à générer des bulles réactives de cavitation telles que l'espèce chimique est générée en présence desdites bulles additionnelles et réagit avec le matériau à graver en produisant un composé soluble ou un précipité

    Method for etching a material in the presence of a solid particles

    No full text
    Procédé de gravure d'une structure (1) comprenant au moins un matériau à graver (4), comprenant : - choisir au moins une espèce chimique apte à réagir avec le matériau à graver (4), - choisir au moins un composé soluble apte à libérer l'espèce chimique précitée, - réaliser une solution (11) contenant ledit composé et contenant une poudre de particules ou grains solides (13) en suspension, - placer le matériau à graver en présence de la solution, - et produire dans la solution des ultrasons à haute fréquence, à au moins une fréquence, apte à générer des bulles actives de cavitation telles que l'espèce chimique est générée et réagit avec le matériau à graver en produisant un composé soluble ou un précipité

    Sonochemical activity in ultrasonic reactors under heterogeneous conditions

    No full text
    International audienceDue to its physical and chemical effects, ultrasound is widely used for industrial purposes, especially in heterogeneousmedium. Nevertheless, this heterogeneity can influence the ultrasonic activity. In this study, theeffect of the addition of inert glass beads on the sonochemical activity inside an ultrasonic reactor is investigatedby monitoring the formation rate of triiodide, and the ultrasonic power is measured by calorimetry and byacoustic radiation. It was found that the sonochemical activity strongly depends on the surface area of the glassbeads in the medium: it decreases above a critical area value (around 10-² m²), partly due to wave scattering andattenuation. This result is confirmed for a large range of frequencies (from 20 to 1135 kHz) and glass beadsdiameters (from 8-12 μm to 6 mm). It was also demonstrated that above a given threshold of the surface area,only part of the supplied ultrasonic power is devoted to chemical effects of ultrasound. Finally, the acousticradiation power appears to describe the influence of solids on sonochemical activity, contrary to the calorimetricpower
    corecore