647 research outputs found

    Hydration and the true water content of swellable clay minerals

    Get PDF
    Water affects biological, chemical and transportation processes as well as mechanical properties of soils. Thereby, clay mineral content determines the moisture balance of soils. In-situ moisture measurements depend on reliable calibration based on the true water content. Drying the soil at 105 °C is the most common procedure to determine the water content although it is known, swellable clay minerals retain hydration water up to much higher temperatures. The amplified water uptake and retention by swellable clay minerals results from hydration of interlayer cations. Thereby, the water binding mechanisms are complex due to structural heterogeneity and are determined by layer charge density and location of substitutions. While several experimental studies deal with the maximum water uptake of selected smectites and heating conditions for full dehydration a comprehensive understanding of the relation between the structure of smectites and water uptake/release is still missing. The Na-saturated smectite / water interface for the montmorillonite-beidellite series is investigated in the present work within the density functional theory (DFT). Layer charge is varied between 0.125 and 0.5 per formula unit [O10(OH)2] by substitution of Al3+ by Mg2+ in the octahedral sheet (montmorillonites) and by substitution of Si4+ by Al3+ in the tetrahedral sheets (beidellites). Starting from the water free supercells (with integer molar ratios), the number of water molecules is increased discretely. Stable hydration states (1H to 3H) do not necessarily correspond to the formation of water layers (1W to 3W) in the interlayer, which is deduced from the development of the basal spaces during hydration. With the help of ab initio thermodynamics, the energy states are related to temperature, and partial pressure of H2O and the resulting phase diagrams revealed hydration state in dependence of relative humidity (RH) as well as necessary temperatures for full dehydration to determine the true water content. Thereby it was shown that 2:1 layer silicates with a layer charge of 0.125 are swellable but reach only the 1H state even at 100% RH, but the removal of water molecules from the interlayer requires temperatures >110 °C and partial pressures of water <100 Pa. In contrast water uptake of smectites with layer charge 0.375 requires RH of >11% at room temperature, but dehydration occurs at moderate heating

    Multistage Software Routers in a Virtual Environment

    Get PDF

    The Euler-Maruyama approximation for the absorption time of the CEV diffusion

    Full text link
    A standard convergence analysis of the simulation schemes for the hitting times of diffusions typically requires non-degeneracy of their coefficients on the boundary, which excludes the possibility of absorption. In this paper we consider the CEV diffusion from the mathematical finance and show how a weakly consistent approximation for the absorption time can be constructed, using the Euler-Maruyama scheme

    Conductive Cooling of SDD and SSD Front-End Chips for ALICE

    Get PDF
    We present analysis, technology developments and test results of the heat drain system of the SDD and SSD front-end electronics for the ALICE Inner Tracker System (ITS). Application of super thermoconductive carbon fibre thin plates provides a practical solution for the development of miniature motherboards for the FEE chips situated inside the sensitive ITS volume. Unidirectional carbon fibre motherboards of 160 -300 micron thickness ensure the mounting of the FEE chips and an efficient heat sink to the cooling arteries. Thermal conductivity up to 1.3 times better than copper is achieved while preserving a negligible multiple scattering contribution by the material (less than 0.15 percent of X/Xo)

    Aureusimines in Staphylococcus aureus Are Not Involved in Virulence

    Get PDF
    virulence. Surprisingly, most of the virulence genes affected by aureusimines form part of the regulon of the SaeRS two component system (TCS), raising the possibility that SaeRS might be directly or indirectly involved in the aureusimine-dependent signaling process. mutant was highly enriched in a mixed culture experiment.-mediated virulence factor production or contribute to staphylococcal virulence

    CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth

    Get PDF
    Engineering T cells to express chimeric antigen receptors (CARs) specific for antigens on hematological cancers has yielded remarkable clinical responses, but with solid tumors, benefit has been more limited. This may reflect lack of suitable target antigens, immune evasion mechanisms in malignant cells, and/or lack of T cell infiltration into tumors. An alternative approach, to circumvent these problems, is targeting the tumor vasculature rather than the malignant cells directly. CLEC14A is a glycoprotein selectively overexpressed on the vasculature of many solid human cancers and is, therefore, of considerable interest as a target antigen. Here, we generated CARs from 2 CLEC14A-specific antibodies and expressed them in T cells. In vitro studies demonstrated that, when exposed to their target antigen, these engineered T cells proliferate, release IFN-Îł, and mediate cytotoxicity. Infusing CAR engineered T cells into healthy mice showed no signs of toxicity, yet these T cells targeted tumor tissue and significantly inhibited tumor growth in 3 mouse models of cancer (Rip-Tag2, mPDAC, and Lewis lung carcinoma). Reduced tumor burden also correlated with significant loss of CLEC14A expression and reduced vascular density within malignant tissues. These data suggest the tumor vasculature can be safely and effectively targeted with CLEC14A-specific CAR T cells, offering a potent and widely applicable therapy for cancer

    INFN Camera demonstrator for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer, self-trigger and on-demand digitization capabilities specifically developed for this purpose. The pixel dimensions of 6Ă—66\times6 mm2^2 lead to a very compact design with challenging problems of thermal dissipation. A modular structure, made by copper frames hosting one PSM and the corresponding FEE, has been conceived, with a water cooling system to keep the required working temperature. The actual design, the adopted technical solutions and the achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Keystone symposium: The role of microenvironment in tumor induction and progression, Banff, Canada, 5–10 February 2005

    Get PDF
    The first Keystone symposium on the role of microenvironment in tumor induction and progression attracted 274 delegates from 13 countries to Banff in the heart of the Canadian Rockies. The meeting was organized by Mina Bissell, Ronald DePinho and Luis Parada, and was held concurrently with the Keystone symposium on cancer and development, chaired by Matthew Scott and Roeland Nusse. The 30 oral presentations and over 130 posters provided an excellent forum for discussing emerging data in this rapidly advancing field
    • …
    corecore