635 research outputs found

    Volume independence in large Nc QCD-like gauge theories

    Get PDF
    Volume independence in large \Nc gauge theories may be viewed as a generalized orbifold equivalence. The reduction to zero volume (or Eguchi-Kawai reduction) is a special case of this equivalence. So is temperature independence in confining phases. In pure Yang-Mills theory, the failure of volume independence for sufficiently small volumes (at weak coupling) due to spontaneous breaking of center symmetry, together with its validity above a critical size, nicely illustrate the symmetry realization conditions which are both necessary and sufficient for large \Nc orbifold equivalence. The existence of a minimal size below which volume independence fails also applies to Yang-Mills theory with antisymmetric representation fermions [QCD(AS)]. However, in Yang-Mills theory with adjoint representation fermions [QCD(Adj)], endowed with periodic boundary conditions, volume independence remains valid down to arbitrarily small size. In sufficiently large volumes, QCD(Adj) and QCD(AS) have a large \Nc ``orientifold'' equivalence, provided charge conjugation symmetry is unbroken in the latter theory. Therefore, via a combined orbifold-orientifold mapping, a well-defined large \Nc equivalence exists between QCD(AS) in large, or infinite, volume and QCD(Adj) in arbitrarily small volume. Since asymptotically free gauge theories, such as QCD(Adj), are much easier to study (analytically or numerically) in small volume, this equivalence should allow greater understanding of large \Nc QCD in infinite volume.Comment: 32 pages, 4 figure

    First search for double-beta decay of 184Os and 192Os

    Full text link
    A search for double-beta decay of osmium has been realized for the first time with the help of an ultra-low background HPGe gamma detector at the underground Gran Sasso National Laboratories of the INFN (Italy). After 2741 h of data taking with a 173 g ultra-pure osmium sample limits on double-beta processes in 184Os have been established at the level of T_{1/2} about 10^{14}-10^{17} yr. Possible resonant double-electron captures in 184Os were searched for with a sensitivity T_{1/2} about 10^{16} yr. A half-life limit T_{1/2} > 5.3 10^{19} yr was set for the double-beta decay of 192Os to the first excited level of 192Pt. The radiopurity of the osmium sample has been investigated and radionuclides 137Cs, 185Os and 207Bi were detected in the sample, while activities of 40K, 60Co, 226Ra and 232Th were limited at the mBq/kg level.Comment: 12 pages, 7 figures, 2 table

    Search for 2\beta\ decays of 96Ru and 104Ru by ultra-low background HPGe gamma spectrometry at LNGS: final results

    Full text link
    An experiment to search for double beta decay processes in 96Ru and 104Ru, which are accompanied by gamma rays, has been realized in the underground Gran Sasso National Laboratories of the I.N.F.N. (Italy). Ruthenium samples with masses of about (0.5-0.7) kg were measured with the help of ultra-low background high purity Ge gamma ray spectrometry. After 2162 h of data taking the samples were deeply purified to reduce the internal contamination of 40K. The last part of the data has been accumulated over 5479 h. New improved half life limits on 2\beta+/\epsilon \beta+/2\epsilon\ processes in 96Ru have been established on the level of 10^{20} yr, in particular for decays to the ground state of 96Mo: T1/2(2\nu 2\beta+) > 1.4 10^{20} yr, T1/2(2\nu \epsilon\beta+) > 8.0 10^{19} yr and T1/2(0\nu 2K) > 1.0 10^{21} yr (all limits are at 90% C.L.). The resonant neutrinoless double electron captures to the 2700.2 keV and 2712.7 keV excited states of 96Mo are restricted as: T1/2(0\nu KL) > 2.0 10^{20} yr and T1/2(0\nu 2L) > 3.6 10^{20} yr, respectively. Various two neutrino and neutrinoless 2\beta\ half lives of 96Ru have been estimated in the framework of the QRPA approach. In addition, the T1/2 limit for 0\nu 2\beta- transitions of 104Ru to the first excited state of 104Pd has been set as > 6.5 10^{20} yr.Comment: 14 pages, 5 figures, 2 tables; version accepted for publication on Phys. Rev.

    Universal properties of thermal and electrical conductivity of gauge theory plasmas from holography

    Full text link
    We propose that for conformal field theories admitting gravity duals, the thermal conductivity is fixed by the central charges in a universal manner. Though we do not have a proof as yet, we have checked our proposal against several examples. This proposal, if correct, allows us to express electrical conductivity in terms of thermodynamical quantities even in the presence of chemical potential.Comment: 13 pages, appendix added, close to journal versio

    The formation of medical workers subjectity in the patient care institution environment from a position of the eco-psychological approach

    Get PDF
    The process of the medical worker's subjectity development as the realization of the ability to be a subject of the optional activity in the shape of professional performance in the patient care institution environment is analyse

    Diffusion constant of supercharge density in N=4 SYM at finite chemical potential

    Get PDF
    We compute holographically the diffusion constant of supercharges in N=4 SYM at finite chemical potential for the R-charge, by solving the equations of motion for the transverse mode of the gravitino in the STU black hole in 5 dimensions. We consider the case of one charge and three charges, and we present analytical solutions for small values of the charges and numerical solutions for arbitrary values. We compare our results with other known results in 4 dimensions.Comment: 20 pages, 4 figures; v2: typos correcte

    From Petrov-Einstein to Navier-Stokes in Spatially Curved Spacetime

    Full text link
    We generalize the framework in arXiv:1104.5502 to the case that an embedding may have a nonvanishing intrinsic curvature. Directly employing the Brown-York stress tensor as the fundamental variables, we study the effect of finite perturbations of the extrinsic curvature while keeping the intrinsic metric fixed. We show that imposing a Petrov type I condition on the hypersurface geometry may reduce to the incompressible Navier-Stokes equation for a fluid moving in spatially curved spacetime in the near-horizon limit.Comment: 17 pages, references added, generalizing the metric form in part 3, version published in JHE

    The shear viscosity of the non-commutative plasma

    Full text link
    We compute the shear viscosity of the non-commutative N=4 super Yang-Mills quantum field theory at strong coupling using the dual supergravity background. Special interest derives from the fact that the background presents an intrinsic anisotropy in space through the distinction of commutative and non-commutative directions. Despite this anisotropy the analysis exhibits the ubiquitous result \eta/s = 1/4\pi for two different shear channels. In order to derive this result, we show that the boundary energy momentum tensor must couple to the open string metric. As a byproduct we compute the renormalised holographic energy momentum tensor and show that it coincides with one in the commutative theory.Comment: 17 pages. v2: reference adde

    Wilsonian Approach to Fluid/Gravity Duality

    Get PDF
    The problem of gravitational fluctuations confined inside a finite cutoff at radius r=rcr=r_c outside the horizon in a general class of black hole geometries is considered. Consistent boundary conditions at both the cutoff surface and the horizon are found and the resulting modes analyzed. For general cutoff rcr_c the dispersion relation is shown at long wavelengths to be that of a linearized Navier-Stokes fluid living on the cutoff surface. A cutoff-dependent line-integral formula for the diffusion constant D(rc)D(r_c) is derived. The dependence on rcr_c is interpreted as renormalization group (RG) flow in the fluid. Taking the cutoff to infinity in an asymptotically AdS context, the formula for D()D(\infty) reproduces as a special case well-known results derived using AdS/CFT. Taking the cutoff to the horizon, the effective speed of sound goes to infinity, the fluid becomes incompressible and the Navier-Stokes dispersion relation becomes exact. The resulting universal formula for the diffusion constant D(horizon)D(horizon) reproduces old results from the membrane paradigm. Hence the old membrane paradigm results and new AdS/CFT results are related by RG flow. RG flow-invariance of the viscosity to entropy ratio η/s\eta /s is shown to follow from the first law of thermodynamics together with isentropy of radial evolution in classical gravity. The ratio is expected to run when quantum gravitational corrections are included.Comment: 34 pages, harvmac, clarified boundary conditio

    The ultraviolet limit and sum rule for the shear correlator in hot Yang-Mills theory

    Full text link
    We determine a next-to-leading order result for the correlator of the shear stress operator in high-temperature Yang-Mills theory. The computation is performed via an ultraviolet expansion, valid in the limit of small distances or large momenta, and the result is used for writing operator product expansions for the Euclidean momentum and coordinate space correlators as well as for the Minkowskian spectral density. In addition, our results enable us to confirm and refine a shear sum rule originally derived by Romatschke, Son and Meyer.Comment: 16 pages, 2 figures. v2: small clarifications, one reference added, published versio
    corecore