32 research outputs found

    Autocatalytic Activation of the Furin Zymogen Requires Removal of the Emerging Enzyme's N-Terminus from the Active Site

    Get PDF
    Before furin can act on protein substrates, it must go through an ordered process of activation. Similar to many other proteinases, furin is synthesized as a zymogen (profurin) which becomes active only after the autocatalytic removal of its auto-inhibitory prodomain. We hypothesized that to activate profurin its prodomain had to be removed and, in addition, the emerging enzyme's N-terminus had to be ejected from the catalytic cleft.We constructed and analyzed the profurin mutants in which the egress of the emerging enzyme's N-terminus from the catalytic cleft was restricted. Mutants were autocatalytically processed at only the primary cleavage site Arg-Thr-Lys-Arg(107) downward arrowAsp(108), but not at both the primary and the secondary (Arg-Gly-Val-Thr-Lys-Arg(75) downward arrowSer(76)) cleavage sites, yielding, as a result, the full-length prodomain and mature furins commencing from the N-terminal Asp108. These correctly processed furin mutants, however, remained self-inhibited by the constrained N-terminal sequence which continuously occupied the S' sub-sites of the catalytic cleft and interfered with the functional activity. Further, using the in vitro cleavage of the purified prodomain and the analyses of colon carcinoma LoVo cells with the reconstituted expression of the wild-type and mutant furins, we demonstrated that a three-step autocatalytic processing including the cleavage of the prodomain at the previously unidentified Arg-Leu-Gln-Arg(89) downward arrowGlu(90) site, is required for the efficient activation of furin.Collectively, our results show the restrictive role of the enzyme's N-terminal region in the autocatalytic activation mechanisms. In a conceptual form, our data apply not only to profurin alone but also to a range of self-activated proteinases

    A Novel Enediynyl Peptide Inhibitor of Furin That Blocks Processing of proPDGF-A, B and proVEGF-C

    Get PDF
    BACKGROUND: Furin represents a crucial member of secretory mammalian subtilase, the Proprotein Convertase (PC) or Proprotein Convertase Subtilisin/Kexin (PCSK) superfamily. It has been linked to cancer, tumorgenesis, viral and bacterial pathogenesis. As a result it is considered a major target for intervention of these diseases. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we report, for the first time, the synthesis and biological evaluation of a newly designed potent furin inhibitor that contains a highly reactive beta-turn inducing and radical generating "enediynyl amino acid" (Eda) moiety. "Eda" was inserted between P1 and P1' residues of hfurin(98-112) peptide, derived from the primary cleavage site of furin's own prodomain. The resulting hexadecapeptide derivative inhibited furin in vitro with IC(50) approximately 40 nM when measured against the fluorogenic substrate Boc-RVRR-MCA. It also inhibited furin-mediated cleavage of a fluorogenic peptide derived from hSARS-CoV spike protein with IC(50) approximately 193 nM. Additionally it also blocked furin-processing of growth factors proPDGF-A, B and VEGF-C that are linked to tumor genesis and cancer. Circular dichroism study showed that this inhibitor displayed a predominantly beta-turn structure while western blots confirmed its ability to protect furin protein from self degradation. CONCLUSION/SIGNIFICANCE: These findings imply its potential as a therapeutic agent for intervention of cancer and other furin-associated diseases

    A Femtomol Range FRET Biosensor Reports Exceedingly Low Levels of Cell Surface Furin: Implications for the Processing of Anthrax Protective Antigen

    Get PDF
    Furin, a specialized endoproteinase, transforms proproteins into biologically active proteins. Furin function is important for normal cells and also in multiple pathologies including malignancy and anthrax. Furin is believed to cycle between the Golgi compartment and the cell surface. Processing of anthrax protective antigen-83 (PA83) by the cells is considered thus far as evidence for the presence of substantial levels of cell-surface furin. To monitor furin, we designed a cleavage-activated FRET biosensor in which the Enhanced Cyan and Yellow Fluorescent Proteins were linked by the peptide sequence SNSRKKR↓STSAGP derived from anthrax PA83. Both because of the sensitivity and selectivity of the anthrax sequence to furin proteolysis and the FRET-based detection, the biosensor recorded the femtomolar levels of furin in the in vitro reactions and cell-based assays. Using the biosensor that was cell-impermeable because of its size and also by other relevant methods, we determined that exceedingly low levels, if any, of cell-surface furin are present in the intact cells and in the cells with the enforced furin overexpression. This observation was in a sharp contrast with the existing concepts about the furin presentation on cell surfaces and anthrax disease mechanism. We next demonstrated using cell-based tests that PA83, in fact, was processed by furin in the extracellular milieu and that only then the resulting PA63 bound the anthrax toxin cell-surface receptors. We also determined that the biosensor, but not the conventional peptide substrates, allowed continuous monitoring of furin activity in cancer cell extracts. Our results suggest that there are no physiologically-relevant levels of cell-surface furin and, accordingly, that the mechanisms of anthrax should be re-investigated. In addition, the availability of the biosensor is a foundation for non-invasive monitoring of furin activity in cancer cells. Conceptually, the biosensor we developed may serve as a prototype for other proteinase-activated biosensors

    Regulation of Radial Glial Motility by Visual Experience

    No full text
    Radial glia in the developing optic tectum express the key guidance molecules responsible for topographic targeting of retinal axons. However, the extent to which the radial glia are themselves influenced by retinal inputs and visual experience remains unknown. Using multiphoton live imaging of radial glia in the optic tectum of intact Xenopus laevis tadpoles in conjunction with manipulations of neural activity and sensory stimuli, radial glia were observed to exhibit spontaneous calcium transients that were modulated by visual stimulation. Structurally, radial glia extended and retracted many filopodial processes within the tectal neuropil over minutes. These processes interacted with retinotectal synapses and their motility was modulated by nitric oxide (NO) signaling downstream of neuronal NMDA receptor (NMDAR) activation and visual stimulation. These findings provide the first in vivo demonstration that radial glia actively respond both structurally and functionally to neural activity, via NMDAR-dependent NO release during the period of retinal axon ingrowth.Canadian Institutes of Health ResearchCanadian Institutes of Health Research (CIHR)EJLB FoundationEJLB FoundationNational Alliance for Research on Schizophrenia and DepressionNational Alliance for Research on Schizophrenia and DepressionMarch of DimesMarch of DimesNatural Sciences and Engineering Research Council of CanadaNatural Sciences and Engineering Research Council of CanadaFonds de la recherche en sante QuebecFonds de la recherche en sante QuebecFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[07/02938-5]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[05/00587-5]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)[301303/06-1]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens

    No full text
    Pathogens or their toxins, including influenza virus, Pseudomonas, and anthrax toxins, require processing by host proprotein convertases (PCs) to enter host cells and to cause disease. Conversely, inhibiting PCs is likely to protect host cells from multiple furin-dependent, but otherwise unrelated, pathogens. To determine if this concept is correct, we designed specific nanomolar inhibitors of PCs modeled from the extended cleavage motif TPQRERRRKKR downward arrowGL of the avian influenza H5N1 hemagglutinin. We then confirmed the efficacy of the inhibitory peptides in vitro against the fluorescent peptide, anthrax protective antigen (PA83), and influenza hemagglutinin substrates and also in mice in vivo against two unrelated toxins, anthrax and Pseudomonas exotoxin. Peptides with Phe/Tyr at P1' were more selective for furin. Peptides with P1' Thr were potent against multiple PCs. Our strategy of basing the peptide sequence on a furin cleavage motif known for an avian flu virus shows the power of starting inhibitor design with a known substrate. Our results confirm that inhibiting furin-like PCs protects the host from the distinct furin-dependent infections and lay a foundation for novel, host cell-focused therapies against acute diseases
    corecore