7,553 research outputs found
Onsager phase factor of quantum oscillations in the organic metal theta-(BEDT-TTF)4CoBr4(C6H4Cl2)
De Haas-van Alphen oscillations are studied for Fermi surfaces illustrating
the Pippard's model, commonly observed in multiband organic metals. Field- and
temperature-dependent amplitude of the various Fourier components, linked to
frequency combinations arising from magnetic breakdown between different bands,
are considered. Emphasis is put on the Onsager phase factor of these
components. It is demonstrated that, in addition to the usual Maslov index,
field-dependent phase factors must be considered to precisely account for the
data at high magnetic field. We present compelling evidence of the existence of
such contributions for the organic metal theta-(BEDT-TTF)4CoBr4(C6H4Cl2)
On Critical Velocities in Exciton Superfluidity
The presence of exciton phonon interactions is shown to play a key role in
the exciton superfluidity. We apply the Landau criterion for an exciton-phonon
condensate moving uniformly at zero temperature. It turns out that there are
essentially two critical velocities in the theory. Within the range of these
velocities the condensate can exist only as a bright soliton. The excitation
spectrum and differential equations for the wave function of this condensate
are derived.Comment: 7 pages, Latex; to be published in Phys.Rev.Lett (1997
Thermalisation time and specific heat of neutron stars crust
We discuss the thermalisation process of the neutron stars crust described by
solving the heat transport equation with a microscopic input for the specific
heat of baryonic matter. The heat equation is solved with initial conditions
specific to a rapid cooling of the core. To calculate the specific heat of
inner crust baryonic matter, i.e., nuclear clusters and unbound neutrons, we
use the quasiparticle spectrum provided by the Hartree-Fock-Bogoliubov approach
at finite temperature. In this framework we analyse the dependence of the crust
thermalisation on pairing properties and on cluster structure of inner crust
matter. It is shown that the pairing correlations reduce the crust
thermalisation time by a very large fraction. The calculations show also that
the nuclear clusters have a non-negligible influence on the time evolution of
the surface temperature of the neutron star.Comment: 7 pages, 5 figures, submitted to Phys. Rev.
Origin of the approximate universality of distributions in equilibrium correlated systems
We propose an interpretation of previous experimental and numerical
experiments, showing that for a large class of systems, distributions of global
quantities are similar to a distribution originally obtained for the
magnetization in the 2D-XY model . This approach, developed for the Ising
model, is based on previous numerical observations. We obtain an effective
action using a perturbative method, which successfully describes the order
parameter fluctuations near the phase transition. This leads to a direct link
between the D-dimensional Ising model and the XY model in the same dimension,
which appears to be a generic feature of many equilibrium critical systems and
which is at the heart of the above observations.Comment: To appear in Europhysics Letter
Structural network heterogeneities and network dynamics: a possible dynamical mechanism for hippocampal memory reactivation
The hippocampus has the capacity for reactivating recently acquired memories
[1-3] and it is hypothesized that one of the functions of sleep reactivation is
the facilitation of consolidation of novel memory traces [4-11]. The dynamic
and network processes underlying such a reactivation remain, however, unknown.
We show that such a reactivation characterized by local, self-sustained
activity of a network region may be an inherent property of the recurrent
excitatory-inhibitory network with a heterogeneous structure. The entry into
the reactivation phase is mediated through a physiologically feasible
regulation of global excitability and external input sources, while the
reactivated component of the network is formed through induced network
heterogeneities during learning. We show that structural changes needed for
robust reactivation of a given network region are well within known
physiological parameters [12,13].Comment: 16 pages, 5 figure
Random site dilution properties of frustrated magnets on a hierarchical lattice
We present a method to analyze magnetic properties of frustrated Ising spin
models on specific hierarchical lattices with random dilution. Disorder is
induced by dilution and geometrical frustration rather than randomness in the
internal couplings of the original Hamiltonian. The two-dimensional model
presented here possesses a macroscopic entropy at zero temperature in the large
size limit, very close to the Pauling estimate for spin-ice on pyrochlore
lattice, and a crossover towards a paramagnetic phase. The disorder due to
dilution is taken into account by considering a replicated version of the
recursion equations between partition functions at different lattice sizes. An
analysis at first order in replica number allows for a systematic
reorganization of the disorder configurations, leading to a recurrence scheme.
This method is numerically implemented to evaluate the thermodynamical
quantities such as specific heat and susceptibility in an external field.Comment: 26 pages, 11 figure
An Integrated CVaR and Real Options Approach to Investments in the Energy Sector
The objective of this paper is to combine a real options framework with portfolio optimization techniques and to apply this new framework to investments in the electricity sector. In particular, a real options model is used to assess the adoption decision of particular technologies under uncertainty. These technologies are coal-fired power plants, biomass-fired power plants and onshore wind mills, and they are representative of technologies based on fossil fuels, biomass and renewables, respectively. The return distributions resulting from this analysis are then used as an input to a portfolio optimization, where the measure of risk is the Conditional Value-at-Risk (CVaR)
Fermions and Disorder in Ising and Related Models in Two Dimensions
The aspects of phase transitions in the two-dimensional Ising models modified
by quenched and annealed site disorder are discussed in the framework of
fermionic approach based on the reformulation of the problem in terms of
integrals with anticommuting Grassmann variables.Comment: 11 pages, 1 table, no figures. The discussion is merely based on a
talk given at the International Bogoliubov Conference on Problems of
Theoretical and Mathematical Physics, MIRAS--JINR, Moscow--Dubna, Russia,
August 21--27, 200
- …
