8,359 research outputs found

    Magneto-Conductance Anisotropy and Interference Effects in Variable Range Hopping

    Full text link
    We investigate the magneto-conductance (MC) anisotropy in the variable range hopping regime, caused by quantum interference effects in three dimensions. When no spin-orbit scattering is included, there is an increase in the localization length (as in two dimensions), producing a large positive MC. By contrast, with spin-orbit scattering present, there is no change in the localization length, and only a small increase in the overall tunneling amplitude. The numerical data for small magnetic fields BB, and hopping lengths tt, can be collapsed by using scaling variables B⊥t3/2B_\perp t^{3/2}, and B∥tB_\parallel t in the perpendicular and parallel field orientations respectively. This is in agreement with the flux through a `cigar'--shaped region with a diffusive transverse dimension proportional to t\sqrt{t}. If a single hop dominates the conductivity of the sample, this leads to a characteristic orientational `finger print' for the MC anisotropy. However, we estimate that many hops contribute to conductivity of typical samples, and thus averaging over critical hop orientations renders the bulk sample isotropic, as seen experimentally. Anisotropy appears for thin films, when the length of the hop is comparable to the thickness. The hops are then restricted to align with the sample plane, leading to different MC behaviors parallel and perpendicular to it, even after averaging over many hops. We predict the variations of such anisotropy with both the hop size and the magnetic field strength. An orientational bias produced by strong electric fields will also lead to MC anisotropy.Comment: 24 pages, RevTex, 9 postscript figures uuencoded Submitted to PR

    Chiral molecular films as electron polarizers and polarization modulators

    Full text link
    Recent experiments on electron scattering through molecular films have shown that chiral molecules can be efficient sources of polarized electrons even in the absence of heavy nuclei as source of a strong spin-orbit interaction. We show that self-assembled monolayers (SAMs) of chiral molecules are strong electron polarizers due to the high density effect of the monolayers and explicitly compute the scattering amplitude off a helical molecular model of carbon atoms. Longitudinal polarization is shown to be the signature of chiral scattering. For elastic scattering, we find that at least double scattering events must take place for longitudinal polarization to arise. We predict energy windows for strong polarization, determined by the energy dependences of spin-orbit strength and multiple scattering probability. An incoherent mechanism for polarization amplification is proposed, that increases the polarization linearly with the number of helix turns, consistent with recent experiments on DNA SAMs.Comment: 5 Pages, 4 figure

    Toward a test of angular momentum coherence in a twin-atom interferometer

    Full text link
    We present a scheme well-suited to investigate quantitatively the angular momentum coherence of molecular fragments. Assuming that the dissociated molecule has a null total angular momentum, we investigate the propagation of the corresponding atomic fragments in the apparatus. We show that the envisioned interferometer enables one to distinguish unambiguously a spin-coherent from a spin-incoherent dissociation, as well as to estimate the purity of the angular momentum density matrix associated with the fragments. This setup, which may be seen as an atomic analogue of a twin-photon interferometer, can be used to investigate the suitability of molecule dissociation processes -- such as the metastable hydrogen atoms H(22S2^2 S)-H(22S2^2 S) dissociation - for coherent twin-atom optics.Comment: 6 pages, 3 Figures. Final version accepted for publication in Europhysics Letter

    Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems

    Get PDF
    Abstract. Real-time assessment of debris-flow hazard is fundamental for developing warning systems that can mitigate risk. A convenient method to assess the possible occurrence of a debris flow is to compare measured and forecasted rainfalls to critical rainfall threshold (CRT) curves. Empirical derivation of the CRT from the analysis of past events' rainfall characteristics is not possible when the database of observed debris flows is poor or when the environment changes with time. For debris flows and mud flows triggered by shallow landslides or debris avalanches, the above limitations may be overcome through the methodology presented. In this work the CRT curves are derived from mathematical and numerical simulations, based on the infinite-slope stability model in which slope instability is governed by the increase in groundwater pressure due to rainfall. The effect of rainfall infiltration on landside occurrence is modelled through a reduced form of the Richards equation. The range of rainfall durations for which the method can be correctly employed is investigated and an equation is derived for the lower limit of the range. A large number of calculations are performed combining different values of rainfall characteristics (intensity and duration of event rainfall and intensity of antecedent rainfall). For each combination of rainfall characteristics, the percentage of the basin that is unstable is computed. The obtained database is opportunely elaborated to derive CRT curves. The methodology is implemented and tested in a small basin of the Amalfi Coast (South Italy). The comparison among the obtained CRT curves and the observed rainfall amounts, in a playback period, gives a good agreement. Simulations are performed with different degree of detail in the soil parameters characterization. The comparison shows that the lack of knowledge about the spatial variability of the parameters may greatly affect the results. This problem is partially mitigated by the use of a Monte Carlo approach

    Metodologia de amostragem e nível de ação para as principais pragas da mangueira no Vale do São Francisco.

    Get PDF
    Principais pragas da mangueira no Vale do São Francisco; Microácaro da mangueira; Mosquinha da manga; Microlepidópterros da inflorescência; Tripes.bitstream/item/104890/1/Metodologia-de-Amostragem0001.pd

    The Apheis project: Air Pollution and Health—A European Information System

    Get PDF
    At a time when the Health Effects Institute, Centers for Disease Control, and Environmental Protection Agency are creating an Environmental Public Health Tracking Program on Air Pollution Effects in the USA, it seemed useful to share the experience acquired since 1999 by the Apheis project (Air Pollution and Health—A European Information System), which has tracked the effects of air pollution on health in 26 European cities and continues to do so as the new Aphekom project. In particular, this paper first describes the continuing impact of air pollution on health in Europe, how the Apheis project came to be and evolved, what its main objectives and achievements have been, and how the project benefited its participants. The paper then summarizes the main learnings of the Apheis project
    • …
    corecore