1,871 research outputs found

    Some remarks on the strong limit-point condition of second-order linear differential expressions

    Get PDF

    On open quantum systems, effective Hamiltonians and device characterization

    Get PDF
    High fidelity models, which support accurate device characterization and correctly account for environmental effects, are crucial to the engineering of scalable quantum technologies. As it ensures positivity of the density matrix, one preferred model for open systems describes the dynamics with a master equation in Lindblad form. The Linblad operators are rarely derived from first principles, resulting in dynamical models which miss those additional terms that must generally be added to bring the master equation into Lindblad form, together with concomitant other terms that must be assimilated into an effective Hamiltonian. In first principles derivations such additional terms are often cancelled (countered), frequently in an ad hoc manner. In the case of a Superconducting Quantum Interference Device (SQUID) coupled to an Ohmic bath, the resulting master equation implies the environment has a significant impact on the system's energy. We discuss the prospect of keeping or cancelling this impact; and note that, for the SQUID, measuring the magnetic susceptibility under control of the capacitive coupling strength and the externally applied flux, results in experimentally measurable differences between models. If this is not done correctly, device characterization will be prone to systemic errors.Comment: 5 pages, 3 figure

    On a conjecture of Bennewitz, and the behaviour of the Titchmarsh-Weyl matrix near a pole

    Full text link
    For any real limit-nn 2n2nth-order selfadjoint linear differential expression on [0,∞)[0,\infty), Titchmarsh- Weyl matrices M(λ)M(\lambda) can be defined. Two matrices of particu lar interest are the matrices MD(λ)M_D(\lambda) and MN(λ)M_N(\lambda) assoc iated respectively with Dirichlet and Neumann boundary conditions at x=0x=0. These satisfy MD(λ)=−MN(λ)−1M_D(\lambda) = -M_{N}(\lambda)^{-1}. It is known that when these matrices have poles (which can only lie on the real axis) the existence of valid HELP inequalities depends on their behaviour in the neighbourhood of these poles. We prove a conjecture of Bennewitz and use it, together with a new algorithm for computing the Laurent expansion of a Titchmarsh-Weyl matrix in the neighbourhood of a pole, to investigate the existence of HELP inequalities for a number of differential equations which have so far proved awkward to analys

    Fast algorithm for detecting community structure in networks

    Full text link
    It has been found that many networks display community structure -- groups of vertices within which connections are dense but between which they are sparser -- and highly sensitive computer algorithms have in recent years been developed for detecting such structure. These algorithms however are computationally demanding, which limits their application to small networks. Here we describe a new algorithm which gives excellent results when tested on both computer-generated and real-world networks and is much faster, typically thousands of times faster than previous algorithms. We give several example applications, including one to a collaboration network of more than 50000 physicists.Comment: 5 pages, 4 figure

    Persistent entanglement in two coupled SQUID rings in the quantum to classical transition - A quantum jumps approach

    Full text link
    We explore the quantum-classical crossover of two coupled, identical, superconducting quantum interference device (SQUID) rings. The motivation for this work is based on a series of recent papers. In ~[1] we showed that the entanglement characteristics of chaotic and periodic (entrained) solutions of the Duffing oscillator differed significantly and that in the classical limit entanglement was preserved only in the chaotic-like solutions. However, Duffing oscillators are a highly idealised toy system. Motivated by a wish to explore more experimentally realisable systems we extended our work in [2,3] to an analysis of SQUID rings. In [3] we showed that the two systems share a common feature. That is, when the SQUID ring's trajectories appear to follow (semi) classical orbits entanglement persists. Our analysis in[3] was restricted to the quantum state diffusion unravelling of the master equation - representing unit efficiency heterodyne detection (or ambi-quadrature homodyne detection). Here we show that very similar behaviour occurs using the quantum jumps unravelling of the master equation. Quantum jumps represents a discontinuous photon counting measurement process. Hence, the results presented here imply that such persistent entanglement is independent of measurement process and that our results may well be quite general in nature.Comment: 6 pages, 3 figures. Published as part of a special issue for the 11th International Conference on Squeezed States and Uncertainty Relations/4th Feynman festival in Olomouc 2009 (This paper extends the results presented in arXiv:0909.4488
    • …
    corecore